期刊文献+

基于粒子群优化算法的PID液位控制 被引量:7

PID liquid level control based on particle swarm optimization algorithm
下载PDF
导出
摘要 文章针对双水箱液位串级控制系统,为其主调节器设计了一种基于粒子群优化算法的参数自整定PID控制器,并在过程控制试验平台上利用MCGS组态软件加以实现;实验结果表明,新的控制器较常规PID控制器响应速度快,超调小且调节时间短,系统的性能得到明显改善。 For the water level control of the system composed of two tanks, a novel self-tuning PID controller is designed based on the particle swarm optimization(PSO) algorithm and applied to the main regulator within the cascade control scheme. The controller is realized by using the configuration software MCGS and tested on an experimental process control platform. The experimental results show that the water level control system with the new PSO self-tuning PID acquired better performance than the conventional PID.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第11期1674-1677,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省教育厅自然科学基金资助项目(2006KJ080B)
关键词 粒子群优化算法 PID控制 参数自整定 液位 particle swarm optimization algorithm PID control parameters' self-tuning liquid level
  • 相关文献

参考文献11

  • 1Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of Intemational Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942- 1948.
  • 2Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Transactions on Energy Conversion, 2004, 9 (2): 384-391.
  • 3Shi Y, Eberhart R. A modified particle swarm optimizer [C]//Proceedings of International Conference on Evolutionary Computation. Anchorage, Alaska: IEEE, 1998: 69-73.
  • 4Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[C]//Proceedings of the Congress on Evolutionary Computation. Seoul: IEEE,2001:87-93.
  • 5Hu X H, Eberhart R. Engineering optimization with particle swarm[C]//Proceedings of IEEE Swarm Intelligence Symposium. Indianapolis, Indiana: IEEE,2003:59-57.
  • 6Konstantinos E P, Michael N V. On the compulation of all global minimizers through particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3) :221-224.
  • 7Frans V D B, Andries P E. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3) :225-239.
  • 8王东风,韩璞.基于粒子群优化的混沌系统比例-积分-微分控制[J].物理学报,2006,55(4):1644-1650. 被引量:11
  • 9欣斯基.过程控制系统[M].北京:清华大学出版社,2004:212-218.
  • 10Shi Y, Eberhart R. Empirical study of particle swarm optimization[C]//Proc of International Conference on Evolutionary Computation. Washington, USA, 1999 : 1945-1950.

二级参考文献12

  • 1杨志红,姚琼荟,杨昌宏.基于状态PI调节器的离散混沌系统控制[J].电机与控制学报,2003,7(1):67-69. 被引量:4
  • 2Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 3Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 4Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 5Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 6Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 7Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 8Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.
  • 9焉德军,刘向东,朱伟勇.六辊UC轧机的OGY混沌控制对策[J].控制与决策,1999,14(2):156-160. 被引量:4
  • 10薛月菊,尹逊和,冯汝鹏.用基于输入-输出线性化的自适应模糊方法控制混沌系统[J].物理学报,2000,49(4):641-646. 被引量:13

共引文献319

同被引文献49

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部