期刊文献+

直径为4的奇优美树 被引量:4

Odd graceful trees whose diameters are four
下载PDF
导出
摘要 对于简单图G=<V,E>,如果存在一个映射f:V→{0,1,2,…,2E|-1}满足:对任意的u,v∈V,若u≠v,则f(u)≠f(v);max{f(v)|v∈V}=2|E|-1;对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=|f(u)-f(v)|,e=uv;{g(e)|e∈E}={1,3,5,…,2|E|-1},则称G为奇优美图,f称为G的奇优美标号。提出一个猜想:每棵树都是奇优美的,文章证明了直径为4的树都是奇优美的。 Let G=〈V,E〉 be a simple graph. If there exists a mapping f: V→{0,1,2,…,2E|-1}which satisfies: arbitaryu,v∈V, if u≠v,then f(u)≠f(v) { max{f(v)|v∈V} =2 |E|-1; arbitarye1 ,e2 ∈E,if e1≠e2,theng(e1)≠g(e2) ,hereg(e)=|f(u)-f(v)|,e=uv; {g(e) |e≠E}={1,3,5, …,2 |E|-1},then G is called an odd graceful graph, and f is called odd graceful labeling of G. Mr. Gnanajoethi had one idea that every tree is odd graceful. In this paper, it is proved that all trees whose diameter are four are odd graceful graphs.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第11期1780-1782,共3页 Journal of Hefei University of Technology:Natural Science
基金 河南省自然科学基金资助项目(0511013800)
关键词 直径 奇优美图 奇优美标号 tree diameter odd graceful graph odd graceful labeling
  • 相关文献

参考文献5

  • 1Gallian A A. Dynamic survey of graph labeling [J]. The Electronic Journal of Combinatorics, 2000,6:117-134.
  • 2Ma Kejie. Graceful graph [M]. Beijing:Peking University Press, 1991 : 10-50.
  • 3Gallian A. A guide to the graph labeling zoo[J]. Discrete Mathematics, 1994,49 : 213-229.
  • 4Gallian A. A survey: recent result, conjectures and pen problems in labeling graph [J]. Journal of Graph Theory, 1989,13(4) :491-504.
  • 5Rosa A. On certain valuations of the vertices of a graph theory of graphs[C]//Proc Internat Sympos, Rome, 1966 20-80.

同被引文献21

  • 1GALLIAN A. A dynamic survey of graph labeling[J]. The Electronic Journal of Combinatorics, 2000,6.
  • 2MAke Jie. Graceful Graph[M]. Beijing: Peking University press, 1991.
  • 3RINGEL G. Problem 25 in theory of graphs and its application [J]. Proc. Symposium Smolenice, 1963,162.
  • 4Rosa A. On Certain Valuations of Vertices of a Graph[M]. Theory of Graphs, Proc. Internat sympos, Rome, 1966. 349-355.
  • 5Golom B S W. How to Number a Graph[M]. Graph Theory and Computing, Academic press, New York, 1972. 23-37.
  • 6GALLIAN A. A guide to the graph labeling Zoo[J]. Discrete Mathematics, 1994, 49: 213-229.
  • 7KATHIE SAN KM. Two classes of graceful graphs[J]. Ars combinatioria, 2000,55: 129-132.
  • 8D Frank Hsu. Harmonious Labelings of Windmill graphs and Related Graphs[J]. Journal of Graph Theory, 1982, 6(1):85-87.
  • 9Zhao Lingqi, Jirimutu. On the gracefulness of the digraph n -Cm for m = 17 [J] Utilitas Mathematica, 2011, 82: 126-130.
  • 10Ma Kejie. Graceful graph [M]. Beijing: Peking University Press, 1991 : 10-50.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部