摘要
对于简单图G=<V,E>,如果存在一个映射f:V→{0,1,2,…,2E|-1}满足:对任意的u,v∈V,若u≠v,则f(u)≠f(v);max{f(v)|v∈V}=2|E|-1;对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=|f(u)-f(v)|,e=uv;{g(e)|e∈E}={1,3,5,…,2|E|-1},则称G为奇优美图,f称为G的奇优美标号。提出一个猜想:每棵树都是奇优美的,文章证明了直径为4的树都是奇优美的。
Let G=〈V,E〉 be a simple graph. If there exists a mapping f: V→{0,1,2,…,2E|-1}which satisfies: arbitaryu,v∈V, if u≠v,then f(u)≠f(v) { max{f(v)|v∈V} =2 |E|-1; arbitarye1 ,e2 ∈E,if e1≠e2,theng(e1)≠g(e2) ,hereg(e)=|f(u)-f(v)|,e=uv; {g(e) |e≠E}={1,3,5, …,2 |E|-1},then G is called an odd graceful graph, and f is called odd graceful labeling of G. Mr. Gnanajoethi had one idea that every tree is odd graceful. In this paper, it is proved that all trees whose diameter are four are odd graceful graphs.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第11期1780-1782,共3页
Journal of Hefei University of Technology:Natural Science
基金
河南省自然科学基金资助项目(0511013800)
关键词
树
直径
奇优美图
奇优美标号
tree
diameter
odd graceful graph
odd graceful labeling