期刊文献+

基于LS-SVM的模态参数识别方法 被引量:4

LS-SVM-based Method for Modal Parameter Identification
原文传递
导出
摘要 将最小二乘支持向量机回归用于系统的模态参数识别研究。针对经典的最小二乘支持向量回归缺少鲁棒性和稀疏性的缺陷,提出了一种兼具鲁棒性和稀疏性的最小二乘支持向量回归的算法,并保持了它原有的计算速度快的优点。最后,结合结构动力学方程的自回归滑动平均时间序列形式,给出了结构的模态参数提取方法和流程,给出了相应的数值算例以及进行了实验的检验证明。结果表明,本文的方法能够快速、准确地提取出系统的模态参数。 A least-squares support vector regression (LS-SVR) technique is applied to modal parameter identification in this article. While the present least squares support vector machines (LS-SVM) exhibit two natural drawbacks of insufficient robustness and sparseness, a novel algorithm that can overcome these drawbacks is proposed. An LS-SVM-based method employing the auto regression moving average (ARMA) time series is presented for linear structural parameter identification using the observed vibration data. Both numerical evaluation and experimental validation demonstrate that the LS-SVM-based method identifies structural modal parameters accurately and quickly.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第11期2087-2092,共6页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20071551016)
关键词 最小二乘支持向量机 自回归滑动平均模型 鲁棒性 稀疏化 模态分析 least squares support vector machines (LS-SVM) ARMA model robustness sparseness modal analysis
  • 相关文献

参考文献17

  • 1Kitagawa G. Monte Carlo filter and smoother for non Gaussian nonlinear state space models[J]. Journal of Computational and Graphical Statistics, 1996, 5 (1) : 1 -25.
  • 2Ko J M, Sun Z G, Ni Y Q. Multi-stage identification scheme for detecting damage in cable stayed Kap Shui Mun Bridge[J]. Engineering Structures, 2002, 24 (7): 857- 868.
  • 3Yeung W T, Smith J W. Damage detection in bridges using neural networks for pattern recognition of vibration signatures[J]. Engineering Structures, 2005, 27(5): 685- 698.
  • 4Koh C G, Hong B, Liaw C Y. Substructural and progressive structural identification methods [ J]. Engineering Structures, 2003, 25(12):1551-1563.
  • 5Yang J N, Lei Y, Pan S W, et al. System identification of linear structures based on Hilbert Huang spectral analysis Part 1: normal modes[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(9): 1443- 1467.
  • 6Ong K C G, Wang Z, Maalej M. Adaptive magnitude spectrum algorithm for Hilbert Huang transform based frequency identification[J]. Engineering Structures, 2008, 30 (1): 33-41.
  • 7Pakrashi B, Basu B, Connor A O. Structural damage detection and calibration using a wavelet-kurtosis technique [J]. Engineering Structures, 2007, 29(9):2097-2108.
  • 8Law S S, Li X Y, Zhu X Q, et al. Structural damage detection from wavelet packet sensitivity[J]. Engineering Structures, 2005, 27(9): 1339-1348.
  • 9Kim H, Melhem H. Damage detection of structures by wavelet analysis[J]. Engineering Structures, 2004, 26 (3) : 347-362.
  • 10Zhang B, Shi Z K, I.i J J. Flight flutter modal parameters identification with atmospheric turbulence excitation based on wavelet transformation[J]. Chinese Journal of Aero nautics, 2007, 20(5):394-401.

同被引文献46

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部