期刊文献+

具有高精度的永磁容错电机非线性电感分析及其解析式求取 被引量:6

Analysis and Prediction of High Accuracy Nonlinear Inductance Analytical Formulation of Fault-tolerant Permanent Magnet Machines
原文传递
导出
摘要 以六相十极永磁容错电机(FTPMM)为例,通过对电机中磁力线分布的分析,得出FTPMM绕组自感的各个主要组成部分,即激磁感、谐波漏感、槽口漏感和槽内漏感,并分析出FTPMM的大电感是通过增加槽口漏感和谐波漏感来实现的。为提高电机优化设计的正确性,提出了新的磁路模型,并引入槽口磁压降参数和槽口计算厚度参数,得出了具有高精度的非线性绕组自感及其组成部分的解析式。最后通过有限元法(FEM)及实验验证,该解析式的精度在1.3%以内,并且电机具有很强的容错能力,对永磁容错电机的优化设计和性能分析有理论指导意义。 A six-phase ten-pole fault tolerant permanent magnet motor(FTPMM) is taken as an example to obtain the chief components of its winding self inductance, such as the magnetizing inductance, harmonic leakage inductance, slot opening leakage inductance and slot inner leakage inductance, by analyzing the distribution of magnetic flux; and large inductance is found to be realized by increasing the leakage of slots and harmonics. In order to improve the validity of the optimization in motor design, a new magnetic circuit model and arithmetics are put forward, then a high accuracy nonlinear analysis formulation of winding self inductance and its portions are obtained by introducing two parameters: the calculation thickness and the magnetic force of slot opening. The largest error of self inductance calculated by the analysis method is below 1.3 % as compared with the verification results of finite element method(FEM) and experiments, which shows that the motor possesses strong fault tolerance. Therefore, the analytical formulation provides a theoretical reference for fault-tolerant motor optimization design and performance analysis.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第11期2156-2164,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50877035) 航空科学基金(2008ZC52036)
关键词 永磁容错电机 槽口漏感 磁路模型 优化设计 高精度非线性绕组 绕组自感解析式 fault tolerant permanent magnet machine slot leakage inductance magnetic circuit model optimization design high accuracy and nonlinear winding analytical formulation of winding self inductance
  • 相关文献

参考文献16

  • 1Coleman A S, Hansen I G. The development of a highly reliable power management and distribution system for transport aircraft[R]. AIAA-1994-4107, 1994.
  • 2郝振洋,胡育文,黄文新.电力作动器中永磁容错电机及其控制系统的发展[J].航空学报,2008,29(1):149-158. 被引量:48
  • 3Weimer J. Past, present & future of aircraft[C]//Electrical Power Systems 39th Aerospace science Meeting Exhibit. 2001: 8-11.
  • 4Mecrow B C, Atkinson D J, Jack A G, et al. The need for fault tolerant in an aero engine electric fuel control system. [C]//IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft. 1999: 9/1-9/5.
  • 5Mecrow B C, Jack A G. Design and testing of a fourphase fault-tolerant permanent-magnet machine for an engine fuel pump[J]. IEEE Transactions on Energy Conver sion, 2004, 19(2): 132- 137.
  • 6Raimondi G M, McFarlane R D, Bingham C M, et al. Large electromechanical actuation systems for flight control surfaces[C]//IEE Colloquium on All Electric Aircraft. 1998: 7/1-7/6.
  • 7Mecrow B C, Jack A G, Haylock J A. Fault tolerant permanent magnet machine drives [J].IEE Proceeding,Electrical Power Applications, 1996, 143(6): 437-442.
  • 8Haylock J A, Mecrow B C, Jack A G, et al. Operation of fault tolerant machines with winding failures[J]. IEEE Tran Energy Consume, 1999, 14(4): 1490- 1495.
  • 9Demerdash N A, Hijazi J M, Arkadan A A. Computation of inductances of permanent magnet brushless DC motors with damper windings by energy[J]. IEEE Transactions on Energy Conversion, 1988, 3(3): 705-713.
  • 10Mille T J E, McGilp M I, Staton D A, et al. Calculation of inductance in permanent magnet DC motors[J], lEE Proceeding, Electrical Power Applications, 1999, 143 (2) : 129-137.

二级参考文献24

共引文献101

同被引文献72

  • 1欧阳红林,周马山,童调生.多相永磁同步电动机不对称运行的矢量控制[J].中国电机工程学报,2004,24(7):145-150. 被引量:45
  • 2周马山,欧阳红林,童调生,刘亮.不对称多相PMSM的矢量控制[J].电工技术学报,2004,19(12):37-41. 被引量:12
  • 3张卓然,陈志辉,杨善水,严仰光.电励磁双凸极电机数字电压调节器的研究与实现[J].电气应用,2005,24(10):103-106. 被引量:2
  • 4王莉,杨善水,张卓然,严仰光.负载电流反馈补偿法在双凸极无刷直流发电机数字调压器中的应用[J].航空学报,2006,27(5):934-938. 被引量:8
  • 5Ede J D, Atallah K, Wang J B, et al. Effect of optimal torque control on rotor loss of fault-tolerant permanent magnet brushless machines[J]. IEEE Transactions on Magnetics, 2002, 38(5): 312-320.
  • 6Wang J B, Atallah K, Howe D. Optimal torque control of fault-tolerant permanent magnet brushless machines[J]. IEEE Transactions on Magnetics, 2003, 39(5): 2962-2964.
  • 7Arias A, Silva C A, Asher G M, et al. Use of a matrix converter to enhance the sensorless control of a surface-mount permanent-magnet ac motor at zero and low frequency[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 440-449.
  • 8Lee J, Hong J, Narn K, et al. surface-mount permanent-magnet based on a nonlinear observer[J]. Power Electronics, 2010, 25(2): Sensorless control of synchronous motors IEEE Transactions on 290-297.
  • 9Ichikawa S, Tomita M, Doki S, et al. Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 363-372.
  • 10Choi C, Seok J K. Pulsating signal injection-based axis switching sensorless control of surface-mounted permanent-magnet motors for minimal zero-current clamping effects[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1741-1748.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部