期刊文献+

月球着陆器软着陆状态跳跃半主动控制 被引量:3

State-jump Semi-active Control of Lunar Lander Soft Landing
原文传递
导出
摘要 将磁流变阻尼器应用到月球着陆器着陆机构中,进行减震与缓冲。考虑到着陆初始姿态角的不定和月面斜角的未知,建立起着陆器软着陆动力学模型。基于磁流变液在高速流与长冲程时的阻尼特性,分析了磁流变阻尼器的力学特性。应用安全角面的概念定义安全着陆所要求的着陆初始姿态角与月面斜角之间的关系,建立状态跳跃控制策略,实现软着陆半主动控制。通过与某型被动控制的着陆器进行对比分析,研究了半主动控制。研究结果表明:当允许的最大加速度响应不超过8g时,磁流变半主动状态跳跃控制的安全角面为理想安全角面的0.9774,是被动控制安全角面的4.2倍,最大加速度变化的相对标准差为被动控制的0.59;而且当着陆初始姿态角以及月面斜角很大时,月球着陆器姿态角变化少,保证月球着陆器平稳着陆。 Magnetorheological (MR) damper is applied to lunar landing system for shock absorption and vibration reduction. In consideration of the uncertain initial landing attitude angle of lunar lander and the unknown slope of lunar surface, a soft landing dynamic model is built. The mechanical property of MR damper is analyzed in view of the damping characteristics of MR fluid with high-speed and long-stroke. The concept of safe angle scope is used to define the relationship between initial landing attitude angle and lunar slope, and a state- jump algorithm is developed to realize semi-active control during soft landing. Compared with a certain type of passive lunar lander, the semi-active control is analyzed. Numerical results show that the safe angle scope of semi-active state-jump control for MR is 0. 977 4 times that of the perfect one, and 4.2 times that of the passive one when the allowable peak acceleration response does not exceed 8g. It is found that the relative standard deviation of the maximal acceleration variation is 0.59 times that of the passive one. Furthermore, when the initial landing attitude angle and lunar slope are very large, the attitude angle of lunar lander changes little, which ensures a smooth landing of the lunar lander.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第11期2218-2223,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家"863"计划(2006AA05078)
关键词 半主动控制 磁流变阻尼器 状态跳跃 软着陆 月球着陆 semi-active control MR damper state-jump soft landing lunar landing
  • 相关文献

参考文献13

  • 1Matsumoto K, Kamimori N, Takizawa Y, et al. Night survival and long stay for Japanese moon landing [R]. IAC-04- IAA. 3.6.2.10, 2004.
  • 2Lavender R E. Touchdown dynamics analysis of spacecraft for soft lunar landing[R]. NASA TN D-2001, 1964.
  • 3Zupp G A, Doiron H H. A mathematical procedure for predicting the touchdown dynamics of a soft landing vehicle[R]. NASA TN D-7045, 1971.
  • 4Rogers W F. Apollo experience report: lunar module landing gear subsystem[R]. NASA TN D-6850, 1972.
  • 5林华宝.着陆缓冲技术综述[J].航天返回与遥感,1996,17(3):1-16. 被引量:21
  • 6刘志全,黄传平.月球探测器软着陆机构发展综述[J].中国空间科学技术,2006,26(1):33-39. 被引量:36
  • 7王少纯,邓宗全,高海波,胡明,郝广平.微小型月球着陆器冲击隔离着陆腿研究[J].哈尔滨工业大学学报,2004,36(2):180-182. 被引量:17
  • 8王少纯,邓宗全.新型涡流磁阻尼月球着陆器[J].上海交通大学学报,2006,40(12):2151-2154. 被引量:11
  • 9李洪波.磁流变缓冲阻尼器在月球着陆车软着陆过程中的理论与应用研究[D].西安:西北工业大学力学与土木工程学院,2003.
  • 10Batterbee D C, Sims N D. Design and performance optimization of magneto- rheological oleo pneumatic landing gear [C]//Proceedings of the SPIE, Smart Structure and Materials 2005: Damping and Isolation. 2005,5760:77-88.

二级参考文献17

  • 1王少纯,邓宗全,胡明,高海波.Dynamic model building and simulation for mechanical main body of lunar lander[J].Journal of Central South University of Technology,2005,12(3):329-334. 被引量:6
  • 2KOMLE N I, KANG G, BALL A J. Determination of physical properties of planetary sub-surface layers by artificial impacts and penetrometry [ J ]. Adv Space Res,2001,28 (10): 1539 -1549.
  • 3HILCHENBACH M, KUCHEMANN O, ROSENBAUER H. Impact on a comet: Rosetta lander simulations [ J ].Planetary and Space Science, 2000, 48:361 -369.
  • 4''振动与冲击''手册编委会.振动与冲击[M].北京:国防工业出版社,1992..
  • 5冯慈璋.电磁场[M].北京:人民出版社,1979..
  • 6王少纯.[D].哈尔滨:哈尔滨工业大学机电学院,2004.
  • 7Taylor Inc. Investigation of The Application of Airbag to Provide Softlanding. AIAA 2001 2045, 2001.
  • 8Sperling F B. The Surveyor Shock Absorber. AIAA N50-17368, 1964.
  • 9Milton Beilock. Surveyor Lander Mission Capability, NASA N64-28969, 1964.
  • 10Lavochkin. The Lunokhod unmanned lunar-17 surface rover. NASA 1976-081A, 1976.

共引文献79

同被引文献59

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部