期刊文献+

噪声环境下基于不确定性度量的随机HT直线检测 被引量:2

UNCERTAINTY MEASUREMENT-BASED RANDOM HOUGH TRANSFORM LINE DETECTION IN NOISY CONDITION
下载PDF
导出
摘要 含噪图像中直线的自动检测是机器视觉和图像处理中的热点问题之一。基于Hough变换的直线检测算法中采用硬投票方案,在噪声环境下检测精度下降且占用内存大。为了提高检测算法的抗噪性和降低算法的计算复杂性,提出了一种新的将边缘点不确定性度量和随机Hough变换相结合的直线检测算法。该算法在所建立的点属于某直线上不确定性度量概率模型基础上,根据随机选择的两点间直线参数,按照Bayesian法则用基于不确定度量的参数空间软投票提高了检测算法的抗噪能力。实验结果表明,算法在较高的噪声(方差大于0.03)时,检测误差小于1‰,检测时间是单纯不确定度量直线检测方法的1/2,比传统Hough变换算法快10-15倍。 Automatic line detection in noisy images is one of the research hot-spots in computer vision and image processing. Conventional Hough Transform (HT) algorithm uses brute-force voting scheme,its detection precision will degrade especially in noisy images, and occupies large amount of memory. In order to improve anti-noise performance of the detection algorithm and to reduce the computational complexity, a new line detection method is proposed, which integrates uncertainty measures of edge points and randomized Hough transform. After building a probability model of measurement of the uncertainty that each edge point belongs to a line, the algorithm computes line parameter between two points randomly selected in edge images. An uncertainty measurement-based" soft voting scheme" in parameter space is utilized according to Bayesian rules to improve anti-noising ability of the detection algorithm. Experimental results show that the proposed algorithm has the detection error rate less than 1‰ under relative higher noise level ( noise variant larger than 0.03 ) but its detection time is only 1/2 of the pure uncertainty measurement line detection method used ,and is 10-15 times faster than conventional HT method.
出处 《计算机应用与软件》 CSCD 2009年第11期26-29,64,共5页 Computer Applications and Software
基金 国家自然科学基金(60775016) 浙江省重大科技专项(2007C13062)。
关键词 HOUGH变换 不确定性度量 随机HOUGH变换 Hough transform Uncertainty measurement Randomized Hough transform
  • 相关文献

参考文献2

二级参考文献14

  • 1Tagzout S, Achour K, Djekoune O. Hough transform algorithm for FPGA implementation [ J]. Signal Processing System, 2000. 384 ~393.
  • 2Olma G, Magli E. All-integer Hough transform: performance evaluation[A]. Image Processing, International Conference[C]. 2001,338 ~ 341.
  • 3Galambos C, Kittler J, Matas J. Gradient based progressive probabilistic Hough transform[A], lEE Proceedings of Image Signal Process[C]. 2001. 158~ 165.
  • 4Galambos C, Kittler J, Matas J. Using gradient information to enhance the progressive probabilistic Hough transform[A]. Proceedings of Pattern Recognition[C]. 2000. 560 ~ 563.
  • 5Acqua F D, Gamba P. Detection of urban structures in SAR images by robust fuzzy clustering algorithms: the example of street tracking[J]. IEEE Transactions on Gecscience and Remote Sensing, 2001.223 ~ 230.
  • 6Hough P V. Machine analysis of bubble chamber pictures[A]. Proceedings of Int Conf High-Energy Accelerators and Instrumentation[C]. Switzerland: Geneva, 1959. 554 ~ 556.
  • 7Majumdar A K. Design of an ASIC for straight line detection in an image [ A ]. Proceedings of VLSI Design, Thirteenth International Conference[ C]. 2000.128~ 133.
  • 8PVC Hough. Method and means for recognizing complex patterns[M]. US Patent 3069654, 1962.
  • 9DUDA RO, HART PE. Use of the Hough transfo-rmation to detect lines and curves in pictures [J]. Com-mun. ACM , 1972, 15 (1):11 -15.
  • 10XU L, OJAE, KULTANENP. A new curve detection method: randomized Hough transform (RHT) [ J]. Pattern Recognition Letters,1990:331 -338.

共引文献43

同被引文献13

  • 1易玲.基于分级的快速霍夫变换直线检测[J].微计算机信息,2007,23(31):206-208. 被引量:22
  • 2WOODFORD O J, PHAM M T, MAKI A, et al.Demisting the Hough transform for 3D shape recognition and registration[J]. International Journal of Computer Vision, 2014, 106(3):332-341.
  • 3YAO A, GALL J, van GOOL L. A Hough transform-based voting framework for action recognition[C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:2061-2068.
  • 4XU L, OJA E, KULTANEN P. A new curve detection method: Randomized Hough Transform (RHT)[J]. Pattern Recognition Letters, 1990, 11(5): 331-338.
  • 5KIRYATI N, ELDAR Y, BRUCKSTEIN A M. A probabilistic Hough transform[J]. Pattern recognition, 1991, 24(4): 303-316.
  • 6JI J, CHEN G, SUN L. A novel Hough transform method for line detection by enhancing accumulator array[J]. Pattern Recognition Letters, 2011, 32(11): 1503-1510.
  • 7LEE D, PARK Y. Discrete Hough transform using line segment representation for line detection[J]. Optical Engineering, 2011, 50(8): 087004.
  • 8CHUNG K L, HUANG Y H, TSAI S R. Orientation-based discrete Hough transform for line detection with low computational complexity[J]. Applied Mathematics and Computation, 2014, 237(7): 430-437.
  • 9王媛媛,陈旺,张茂军,王炜,徐玮.折反射全向图像与遥感图像配准的建筑物高度提取算法[J].计算机应用,2011,31(9):2477-2480. 被引量:6
  • 10秦涛,张轲,邓景煜,金鑫.基于改进最小二乘法的焊缝特征直线提取方法[J].焊接学报,2012,33(2):33-36. 被引量:21

引证文献2

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部