期刊文献+

基于支持向量机音乐类型分类方法 被引量:2

A NEW METHOD FOR MUSICAL GENRE CLASSIFICATION BASED ON SUPPORT VECTOR MACHINES
下载PDF
导出
摘要 音乐类型分类是音乐检索中非常重要的一个方面。采用支持向量机方法进行音乐类型分类,提取B样条小波特征作为音乐的特征。采用指数径向基函数(ERBF)内核,分类正确率可达86%,比传统的混合高斯模型和K近邻分类器,分类性能分别提高了22%和24%。实验结果表明,采用B样条小波和支持向量机方法是一种有效的音乐类型分类方法。 Musical genre classification is essential in music retrieval. The SVMs method is applied to musical genre classification, and B- spline wavelet feature is extracted as the features of music. Exponential Radial Basis Function (ERBF) kernel function is used to classify the musical genre,86% of classification correctness rate is achieved. In comparison with Gaussian Mixture Model (GMM) classifier and K Nearest Neighbouring (KNN) classifier,the performance of this classification improves 22% and 24% respectively. Experimental results indicate that the method using B-spline wavelet and SVM is effective for musical genre classification.
出处 《计算机应用与软件》 CSCD 2009年第11期221-222,245,共3页 Computer Applications and Software
关键词 音乐类型分类 小波 支持向量机 核函数 Musical genre classification Wavelet Support vector machines Kernel function
  • 相关文献

参考文献8

  • 1Burred J, Lerch A, Hierarchical A. approach to automatic musical genre classification[ C]//Int. Conf. on Digital Audio Effects ( DAFx - 03 ), London, UK,2003 : 308 - 311.
  • 2Li T, Oginara M, Li Q. A comparative study on content-based music genre classification . in Proc. Of the 26th annual int. ACM SIGIR conf. on Research and development in information retrieval, ACM, ACM Press,2003 : 282 -289.
  • 3Mallat S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674 - 693.
  • 4Downie T R, Silverman B W. The discrete multiple wavelet transform and thresholding methods[ J]. IEEE Transon Signal Processing , 1998 , 46 (9) : 2558 -2561.
  • 5Tzanetakis J, Cook P. Musical genre classification of audio signals [ J]. IEEE Trans. on Speech and Audio Processing, 2002, 5 ( 10 ) : 293 - 302.
  • 6Moreno Pedro J, Clarkson Philip. On the use of support vector machines for phonetic classification[ C]//Proceedings of 1999 IEEE International Conference on Acoustics , Speech and Signal Processing, 1999.
  • 7Fine S, Navratil J, Gopinath R A. A hybrid GMM/SVM approach to speaker identification [ C ]//Proceedings of 2001 IEEE International Conference on Acoustics ,Speech and Signal Processing,2001.
  • 8王欢良,韩纪庆,张磊.基于支持向量机的变异语音分类研究[J].哈尔滨工业大学学报,2003,35(4):389-393. 被引量:7

二级参考文献1

  • 1马永林 韩纪庆.应力影响下的变异语音分类[A]..863计划智能计算机主题学术会议论文集[C].,2000..

共引文献6

同被引文献17

  • 1SOMAN K P.数据挖掘基础教程[M].范明,牛常勇,译.北京:机械工业出版社,2009.
  • 2Lo Yulung, Lin Yichen. Content-based music classification [C]. Chengdu, China: Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010: 112-116.
  • 3Xiang Changsheng, Zhou Ziying A new music classification method based on BP neural network [J]. International Journal of Digital Content Technology and Its Applications, 2011, 5 (6): 85-94.
  • 4Chang liaoyu, Yu Xiaoqing, Wan Wanggen, et al. Research on fast music classification based on SVM in compressed domain [C]. Shanghai, China: International Conference on Audio, Language and Image Processing, 2008: 638-642.
  • 5Deepa P L, Suresh K. An optimized feature set for music genre classification based on support vector machine [C]. Trivandrum, India: IEEE Recent Advances in Intelligent Computational Systems, 2011:610-614.
  • 6Diane J Hu, Lawrence K Saul. A probability topic model for unsupervised learning of musical key-profiles [C]. Kobe, Japan: International Conference on Music Information Retrieval, 2009: 441-446.
  • 7Samuel Kim, Shrikanth Narayanan, Shiva Sundaram Acoustic topic model for audio infromation retrieval [C]. New Paltz, NY, United States: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2009: 37-40.
  • 8Blei D M, Lafferty J D. A correlated topic model of science [J]. The Annals of Applied Statistics, 2007, 1(1):17-35.
  • 9Blei D M, Lafferty J D. Dynamic topic models [C]. Pitts-burgh, PA, United States: 23rd International Conference on Machine Learning, 2006: 113-120.
  • 10The GTZAN datasets [DB/OL]. Http://marsyas. info/ download/data_sets, 2011.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部