期刊文献+

The study of key design parameters effects on the vortex tube performance 被引量:2

The study of key design parameters effects on the vortex tube performance
原文传递
导出
摘要 In this paper, energy separation effect in a vortex tube has been investigated using a CFD model. Thenumerical simulation has been done due to the complex structure of flow. The governing equationshave been solved by FLUENT code in 2D and 3D compressible and turbulent model. The effects ofgeometrical and thermo-physical parameters have been investigated. The results have shown that theoptimum length to diameter ratio is from 25 to 35. Increasing the number of nozzles from 2 to 4 withconvergent shape is found to be an efficient configuration for the swirl generator. The optimum valueof orifice diameter to tube diameter ratio, for the maximum cold air temperature difference and efficiency,has been determined to be around 0.58. The results show that if the inlet pressure increases upto a critical value, the efficiency will increase. Nevertheless, if it increases to higher values, the efficiencywill decrease. Moreover, it is found out that increasing the cold fraction decreases the coldtemperature difference and efficiency.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第4期370-376,共7页 热科学学报(英文版)
关键词 Vortex tube Energy separation EFFICIENCY Swirl generator 性能影响 设计参数 涡流管 FLUENT CFD模型 三维可压缩 热物理参数 涡流发生器
  • 相关文献

参考文献9

  • 1Ranque GJ (1933) Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. J. Phys.Radium Paris 4: 112-115. Also translated as General Electric Co., Schenectady WorksLibrary (1947), T.F. 3294.
  • 2Hilsch R (1947) The use of expansion of gases in a centrifugal field as a cooling process. Rev Sci Instrum 18 (2): 108-113.
  • 3Eiamsa-ard S, Promvonge P (2007) Review of Ranque-Hilsch effects in vortex tubes. Renewable & sustainable energy reviews DOI: 10.1016/j.rser.2007.03.006.
  • 4Frohlingsdorf W, Unger H (1999) Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube, Int. J. Heat Mass Transfer 42:415-422.
  • 5Eiamsa-ard S, Promvonge P (2007) Numerical investigation of the thermal separation in a Ranque-Hilsch vortex tube. Int. J. Heat Mass Transfer 50(5-6): 821-832.
  • 6Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K, et al. (2005) CFD analysis and ex- perimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube. Int. J. Heat Mass Transfer 48(10): 1961-1973.
  • 7Skye HM, Nellis GF, Klein SA (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube, Int. J. Refrig. 29:71-80.
  • 8Aljuwayhel NF, Nellis GE Klein SA (2005) Parametric and internal study of the vortex tube using a CFD model, Int.J.Refrig. 28(3): 442--450.
  • 9Saidi MH, Valipour MS (2003) Experimental modeling of vortex tube refrigerator. Appl. Therm. Eng. 23: 1971- 1980.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部