期刊文献+

ZnO/RGO复合材料的结构及其光催化性能研究 被引量:14

Structure and Photocatalytic Properties of ZnO/RGO Composite
下载PDF
导出
摘要 本实验以ZnSO4和氧化石墨(Graphite Oxide,GO)原料,在低温环境下(60℃)制备了层状ZnO/RGO(ZnO/Reduced GraphiteOxide)复合材料。通过对ZnO/RGO复合材料进行XRD、FTIR、XPS和FE-SEM等测试,表征了产物的晶相结构、界面状况及微观形貌特征。氧化石墨在与ZnO的复合反应过程中其活性基团消失或减弱,氧化石墨自身被还原为一种类石墨物质(ReducedGO,RGO);GO的预处理过程对产物的形貌有较大影响,采用稀碱溶液对石墨的剥离处理有利于产物的层状结构形成。本文还以甲基橙为目标降解物,考察了不同条件下所得催化剂的紫外光催化性能。研究表明,ZnO/RGO纳米复合材料大大提高了ZnO紫外光催化活性。光致发光谱(PL)显示,ZnO/RGO复合材料的荧光发射峰强度比纯ZnO有较大降低,说明ZnO的光激发电子在氧化石墨的还原产物RGO和ZnO纳米颗粒之间存在界面电子转移效应,因而抑制了ZnO中光生电子-空穴对的复合,从而提高了ZnO的光催化性能。 ZnO/RGO (ZnO/Reduced Graphite Oxide) composites were synthesized at low temperature (60 ℃) using ZnSO4 and GO (Graphite Oxide) as precursors. The as-prepared samples have been characterized by X-ray diffraction (XRD), FTIR, X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FE-SEM), etc. During the formation the composites, GO was reduced to RGO (Reduced Graphite Oxide, RGO). The actives groups, such as C =O and C-O-C disappeared or sharply weakened, while C =C appeared in the reaction processes. The ZnO/RGO composites have layered structures, which greatly dependent on the pretreatment means of GO. Compared with pure ZnO, ZnO/RGO composites showed greatly enhanced UV photocatalytic activity. Photoluminescence (PL) spectra of ZnO/RGO showed a significant decline compared to that of pure ZnO, suggesting the inhibited recombination of excited electron hole pair (e^--h^+). The enhancement of photocatalytic activity for ZnO/RGO could be attributed the migration effect of photoinduced electrons on the interface of RGO and ZnO.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第11期1953-1959,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.50672066)
关键词 氧化锌 氧化石墨 光催化 层状结构 zinc oxide graphite oxide layered structure photocatalysis
  • 相关文献

参考文献31

  • 1Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96.
  • 2Ochuma I J, Osibo O O, Fishwick R P, et al. Catal. Today, 2007,128:100-107.
  • 3Gouvea C A K, Wypych F, Moraes S G, et al. Chemosphere, 2000,40(4):427-432.
  • 4Kang Y C, Park S B. Mater. Lett., 1999,40(3):129-133.
  • 5Dawson A, Kamat P V. J. Phys. Chem. B, 2001,105:960- 966.
  • 6FENG Chun-Bo(冯春波), DU Zhi-Ping(杜志平), ZHAO Yong-Hong(赵永红) , et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2006,22(8):953-957.
  • 7Tan T, Li Y, Liu Y, et al. Mater. Chem. Phys., 2008,111: 305-308.
  • 8LI Xiu-Ting(李秀婷), LIU Li-Fen(柳丽芬), YANG Feng-Lin (杨凤林), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006,22(7): 1180-1186.
  • 9Ranganathan E S, Bej S K, Thompson L T. Appl. Catal. A, 2005,289:153 - 162.
  • 10HAN Jin(韩婧), SHI Li-Yi(施利毅), CHENG Rong-Ming (成荣明), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2008,24(6):950-955.

同被引文献156

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部