期刊文献+

基于支持向量机的遥感图像分析与处理

原文传递
导出
摘要 支持向量机是一种新的机器学习方法。本文结合遥感图像和支持向量机的特性,重点分析了支持向量机在遥感图像分类、遥感图像压缩、遥感图像特征提取等方面的应用。并对支持向量机在遥感图像分析与处理中的应用趋势及有待进一步研究的问题进行了探讨。
作者 何曰光
出处 《武警工程学院学报》 2009年第6期18-21,共4页 Journal of Engineering College of Armed Police Force
  • 相关文献

参考文献4

  • 1Vapnik V. The Nature of Statistical Learning Theory [ M ] . New York : Springer - Verlag , 1995,5 ( 13 ).
  • 2Smola A J , Scholkopf B. A Tutorial on Support Vector Regression[R] . NeuroColt2 Technical Report Series , 1998,1 (20).
  • 3崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 4彭清娥,曹叔尤,刘兴年,雷孝章,黄尔.坡面产沙BP神经网络模型研究[J].水土保持学报,2002,16(3):79-82. 被引量:17

二级参考文献16

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部