期刊文献+

自组织映射拓扑保持的增强

Enhancement of topology preservation of self-organizing map
下载PDF
导出
摘要 在自组织映射(SOM)中,网格各单元的权值向量仅仅是根据各单元和最佳匹配单元(BMU)之间的距离进行更新的,因而输入数据间的拓扑关系不能得到很好的保持。为此提出了两种改进方案。在第一种改进方案中,各单元的权值向量根据各单元和BMU之间对应各坐标的差进行更新。实验结果表明,这种改进方案可以很好地保持拓扑关系,但输入数据的分布密度却不能得到较好的体现。在第二种改进方案中,各单元的权值向量同时根据各单元和BMU之间对应各坐标的差与距离进行更新。实验结果表明,这种改进方案不仅能使拓扑关系得到比SOM更好的保持,而且较好地体现了输入数据的分布密度,并加快了训练的收敛速度。 In the Self-Organization Map ( SOM), the weight vectors of the units in the grid are updated only according to the distance between the units and the Best Matching Unit (BMU), so the topological relationship between input data can not be preserved very well. Therefore, two improved schemes were proposed. In the first improved scheme, the weight vectors of the units were updated according to the differences of the corresponding coordinates between the units and the BMU. Experimental results show that this improved scheme can preserve topological relationship very well, but the distribution density of the input data can not be reflected quite well. In the second improved scheme, the weight vectors of the units were updated both according to the differences of the corresponding coordinates and the distance between the units and the BMU. Experimental results show that this improved scheme can not only preserve topological relationship better than SOM, but also reflect the distribution density of the input data quite well and accelerate the convergence speed of the training.
作者 周向东
出处 《计算机应用》 CSCD 北大核心 2009年第12期3256-3258,共3页 journal of Computer Applications
关键词 自组织映射 拓扑保持 最佳匹配单元 权值向量 分布密度 Self-Organization Map (SOM) topology preservation Best Matching Unit (BMU) weight vector distribution density
  • 相关文献

参考文献14

  • 1KOHONEN T. Self-organizing maps[ M]. Berlin: Springer-Verlag, 1995.
  • 2KOHONEN T. The self - organizing map [ J ] . Proceedings of the IEEE, 1990, 78(9) : 1464 - 1480.
  • 3ALAHAKOON D , HALGAMUGE S K . Dynamic self - organizing maps with controlled growth for knowledge discovery [J]. IEEE Transactions on Neural Networks, 2000, 11 (3) : 601 - 614.
  • 4FRITZKE B. Growing cell structures - A self-organizing network for unsupervised and supervised learning [ J]. Neural Networks, 1994, 7(9) : 1441 - 1460.
  • 5KOIKKALAINEN P, OJA E . Serf - organizing hierarchical feature maps [ C]// 1990 IJCNN International Joint Conference on Neural Networks. Washington, DC: IEEE, 1990:279-284.
  • 6PAKKANEN J, IIVARINEN J, OJA E. The evolving tree - A novel self-organizing network for data analysis [ J]. Neural Processing Letters, 2004, 20(3): 199 -211.
  • 7PAKKANEN J, IIVARINEN J, OJA E. The evolving tree-analysis and applications [ J]. IEEE Transactions on Neural Networks, 2006, 17(3) :591 -603.
  • 8BAUER H-U, PAWELZIK K. Quantifying the neighborhood preservation of self-organizing feature maps [J]. IEEE Transactions on Neural Networks, 1992, 3(4) : 570 -579.
  • 9RITTER H, MARTINETZ T M, SCHULTEN K. Neural computation and self-organizing maps[M]. Upper Saddle River: Addison Wesley, 1992.
  • 10DER R, VILLMANN T. Dynamics of self-organized feature mapping [ C]// Proceedings of the International Workshop on Artificial Neural Networks: New Trends in Neural Computation, LNCS 686. Berlin: Springer-Verlag, 1993:312-315.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部