期刊文献+

结合概率和等价类的双系数支持向量机

Double coefficients support vector machine with probability and equivalence class
下载PDF
导出
摘要 支持向量机(SVM)的有效性依赖于对数据信息获取的准确性。针对传统SVM模型获取数据信息单一导致分类精度不高、泛化能力不强的问题,结合概率分布特性和等价类关系,提出了一种双系数控制分类的新模型。该模型优化了SVM,以双系数方式改进传统参数,为每一个样本同时赋予概率值和等价类系数,充分挖掘数据信息内在规律和联系。实验结果证明:该模型能有效利用数据信息,与SVM、FSVM和RSVM相比有较高的测试精度,能有效提高分类能力,具有较高鲁棒性。 The effectiveness of a Support Vector Machine (SVM) depends on the accuracy of the acquired data information. Considering the low prediction accuracy and poor generalization capacity of SVM caused by simply mining data, a new model was proposed. Combining probability distribution and equivalence class information among data, this model optimized the traditional SVM by adopting double coefficients to promote the capability of acquiring information. Each instance will be assigned two coefficients of probability value and equivalence class. The comparison with SVM, Rough Support Vector Machine (RSVM) and Fuzzy Support Vector Machine (FSVM) illustrates the new model can not only utilize information effectively but also assure a remarkable prediction accuracy and classification ability, and be more robust.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3263-3266,3276,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60372071) 中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金资助项目(20070101) 辽宁省教育厅高等学校科学研究基金资助项目(2008344) 大连市科技局科技计划项目(2007A10GX117)
关键词 支持向量机 概率 等价类 预测精度 Support Vector Machine (SVM) probability equivalence class predictive accuracy
  • 相关文献

参考文献8

  • 1CORTES C, VAPNIK V. Support vector networks [J]. Machine Learning, 1995, 20(3) : 273 - 297.
  • 2VAPNIK V N. Estimation of dependencies based on empirical data [M]. Berlin: Springer-Verlag, 1982.
  • 3HSU C W, LIN C H. A comparison of methods for multi-class support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13(2) :415 -425.
  • 4HUANG H P, LIU Y H. Fuzzy support vector machines for pattern recognition and data mining [ J]. International Journal of Fuzzy Systems, 2002,4(3) : 826 -835.
  • 5LEE K Y, DAE-WON K. Possibilistic support vector machines [ J]. Pattern Recognition, 2005, 38(8) : 1325 - 1327.
  • 6梁宏霞,闫德勤.粗糙支持向量机[J].计算机科学,2009,36(4):208-210. 被引量:9
  • 7PAL N R, PAL K, BEZDEK J C. A mixed C-means clustering model [ C]// Proceedings of the Sixth IEEE International Conference on Fuzzy Systems. Washington, DC: IEEE, 1997:11 -21.
  • 8LIU X, CHENG G, WU J. Analyzing outliers cautiously [J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(2) : 432 - 437.

二级参考文献7

  • 1Cortes C, Vapnik V. Support Vector Networks. Machine learning, 1995,20(3) :273-297
  • 2Vapnik V N. Estimation of Dependencies Based on Empirical Data. Berlin : Springer-Verlag, 1982
  • 3Hsu Chihwei, Lin Chihjen. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002,13(2) :415-425
  • 4Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and data mining. Int'l Journal of Fuzzy Systems, 2002,4(3):826-835
  • 5Lee Ki-Young, Kim Dae- Won. Possibilistic support vector machines. Pattern Recognition, 2005,38(8) : 1325-1327
  • 6Bo Liefeng,Jiao Licheng,Wang Ling. Working Set Selection Using Functional Gain for LS-SVM. IEEE Transactions on Neural Networks,2007,18(5):1541-154
  • 7Pawlak Z. Rough set. International Journal of Information and Computer Science, 1982,11 (5) : 341-356

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部