期刊文献+

多维异步随机扰动的粒子群优化算法 被引量:1

Particle swarm optimization algorithm with multidimensional asynchronism and stochastic disturbance
下载PDF
导出
摘要 针对粒子群优化算法存在易陷入局部最优和在多维空间中搜索效率降低的问题,结合惯性权重凹函数递减策略,提出了随机扰动和多维异步策略。该策略不仅能提高算法的全局搜索能力,而且还能改善维数的束缚。通过对四个典型基准函数的实验表明,该改进算法能够兼顾局部和全局搜索,使得搜索达优率得到较大提高,所得结果精度较高。 Particle swarm optimization has the disadvantages of being easily trapped into a local optimal solution and searching with lower efficiency in multi-dimensional space. With reference to the strategy of concave function to the inertia weight, the authors proposed a method of multidimensional asynchronism and stochastic disturbance to improve the ability to search for global optimum as well as solve the limitation of dimensionality problem. The experimental results of four classic benchmark functions show that the algorithm can keep the balance between the global search and local search, which effectively improves the success probability of searching with higher precision.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3267-3269,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(70671072) 天津市科技支撑项目(08ZCZDGX11100)
关键词 粒子群优化算法 多维异步 随机扰动 惯性权重 Particle Swarm Optimization (PSO) algorithm multidimensional asynehronism stochastic disturbance inertia weight
  • 相关文献

参考文献11

  • 1KENNEDY J, EBERHARTR R. Particle swarm optimization [ C] // Proceedings of IEEE International Conference on Neural Networks. Washington, DC: IEEE, 1995:1942-1948.
  • 2KENNEDY J, EBERHARTR R. SHI Y. Swarm intelligence [M]. San Francisco: Morgan Kanfmann Publisher, 2001 : 287 - 300.
  • 3KROHLING R A, HOFFMANN F, COELHO L S. Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution [C]//Proceedings of IEEE Congress Evolutionary Computation. Washington, DC: IEEE, 2004:959-964.
  • 4陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:308
  • 5ANASTASIADIS A D, MAGOULAS G D. Particle swarms and non-extensive statistics for nonlinear optimization [ J]. The Open Cybernetics and Systemics Journal, 2008, 2:173 - 179.
  • 6XIE X F, ZHANG W J, YANG Z L. Hybrid particle swarm optimizer with mass extinction [ C] //Proceedings of the IEEE International Conference on Communication, Circuits and Systems. Washington, DC: IEEE, 2002: 1170-1174.
  • 7CHEN J Y, ZHANG H Y. Research on application of clustering algorithm based on PSO for the web usage pattern [ C] //Proceedings of the 3rd IEEE International Conference on Wireless Communications Networking and Mobile Computing. Washington, DC: IEEE, 2007:3705 -3708.
  • 8李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 9CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization [ C] // Proceedings of the IEEE Congress on Evolutionary Computation. Washington, DC: IEEE, 1999:1951 - 1957.
  • 10符强.一种引入复合形算子的变异粒子群算法[J].计算机工程与应用,2008,44(31):47-50. 被引量:4

二级参考文献29

共引文献702

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部