期刊文献+

基于模糊C均值的Mean-Shift目标跟踪算法 被引量:4

Mean-Shift tracking algorithm based on FCM
下载PDF
导出
摘要 针对Mean-Shift算法核函数带宽固定的缺陷,提出一种基于模糊C均值(FCM)的Mean-Shift目标跟踪算法。该算法采用FCM算法在YCrCb颜色空间对运动目标及附近背景进行分割,根据分割后的目标像素点统计量,遵循相邻两帧图像中目标大小不会突变的原则,修正Mean-Shift核函数窗宽。实验结果表明,该算法能够准确高效地对运动目标进行跟踪,对尺寸逐渐减小和逐渐增大的目标都能实现自动调整跟踪窗大小。 Concerning the bug of the kernel function bandwidth in traditional Mean-Shift tracking algorithm, a new Mean- Shift tracking algorithm was presented using Fuzzy C-Means (FCM). FCM clustering was used to segment the moving target from background in the YCrCh color-space. According to the rules that the areas of the target in adjoining frames are not changed abruptly, the bandwidth of kernel function was corrected with the statistic of segmented target pixels. Experimental results show that this algorithm can track object accurately and effectively. The sizes of the tracking windows could be adjusted automatically to adapt to the decreasing or increasing sizes of the moving target.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3332-3335,共4页 journal of Computer Applications
关键词 目标跟踪 Mean—Shift算法 模糊C均值聚类 图像分割 target tracking Mean-Shift algorithm Fuzzy C-Means (FCM) clustering image segmentation
  • 相关文献

参考文献7

  • 1COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(3) : 564 - 577.
  • 2COLLINS R T. Mean-Shift blob tracking through scale space [ C]// CVPR '03:2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2003:234-240.
  • 3HAN B, DAVIS L S. Probabilistic fusion-based parameter estimation for visual tracking [ J]. Computer Vision and Image Understanding, 2009, 113 (4) : 435 - 445.
  • 4JEYAKAR J, BABU R V, RAMAKRISHNAN K R. Robust object tracking with background-weighted local kernels [ J]. Computer Vision and Image Understanding, 2008, 112(3) : 296 - 309.
  • 5MINGOTI S A, LIMA J O. Comparing SOM neural network with fuzzy C-means, K-means and traditional hierarchical clustering algorithms [ J]. European Journal of Operational Research 2006, 174 (3) : 1742 - 1759.
  • 6PEDRYCZ W, WALETZKY J. Fuzzy clustering with partial supervision [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1997, 27(5) : 787 -795.
  • 7NOORDAM J C, van den BROEK W H A M. Geometrically guided fuzzy c means clustering for multivariate image segmentation [ C]//Proceedings of 15th International Conference on Pattern Recognition. Washington, DC: IEEE, 2000:462-465.

同被引文献34

  • 1马治国,王江安,宗思光.海天线附近红外弱点目标检测算法研究[J].激光与红外,2004,34(5):389-390. 被引量:10
  • 2卓志敏,缪德超,杨莘元.一种复杂海面背景下的红外舰船目标检测方法[J].传感技术学报,2007,20(8):1934-1936. 被引量:7
  • 3Bar-Shalom Y, Fortmann T E. Tracking and Data Association [M]. New York: Academic Press, 1988.
  • 4Vermaak J, Godsill S J, Perez P. Monte Carlo Filtering for Multi-Target Tracking and Data Association[J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(1): 309-332.
  • 5Cevher V, Velmurugan R. Acoustic Multitarget Tracking Using Direction-of-Arrival Batches[J]. IEEE Trans. on Signal Processing, 2007, 55 (6): 2810-2825.
  • 6Hu Z, Leung H, Blanchette M. Statistical performance analysis of track initiation techniques [J]. IEEE Transactions on Signal Processing, 1997, 45(2): 445-456.
  • 7Benlian Xu, Qinglan Chen, Zhiquan Wang. Ants for track initiation of bearings-only tracking[J]. Simulation Modelling Practice and Theory, 2008, 16(6): 626-638.
  • 8ALPER Y, OMAR J, MUBARAK S. Object tracking: A survey[ J ]. ACM Computing Surveys, 2006, 38 (4) : 1-45.
  • 9HAN M, SETHIY A, HUA W, et al. A detection-based multiple object tracking method [ C ]. International Con- ference of Image Processing. USA: IEEE Computer Soci- ety Press, 2004,5:3065-3068.
  • 10JAWARD M, MIHAYLOVA L, CANAGARAJAH N. Multiple object tracking using particle filters [ C ]. Pro- ceedings of the IEEE Aerospace Conference, Big Sky, Montana : IEEE CS Press, 2006 : 8-16.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部