期刊文献+

新的MR-CT图像轮廓提取方法 被引量:2

New contour extracting method of MR-CT images
下载PDF
导出
摘要 提出了一种新的轮廓提取算法,并将这种算法应用到MR-CT图像的轮廓提取。该算法首先计算图像的灰度阈值,选定属性形态运算递增准则中的属性,并构造选定属性的直方图,通过灰度阈值得到在属性直方图对应的属性阈值;对图像进行属性形态开闭运算,将图像多余信息滤除,再应用典型梯度算子中的罗伯特算子得到图像对象轮廓。证明了该算法具有递增性、幂等性、反扩展性和移不变性。对这种方法在MR-CT图像上进行了实验,实验结果表明MR-CT轮廓能完好地提取出来。仿真实验还证明:该方法有效地保留图像的必要信息,同时具有强抗噪性而且轮廓边缘保持完好。 A new contour extraction method was presented and applied in MR-CT images to get the contours. The new contour extraction method got the gray threshold firstly. The attribute of image in the criteria of attribute operation was constructed. The selected attribute histogram was structured. The attribute threshold was gotten by the corresponding gray threshold in the attribute histogram. The images were operated by the attribute open and close operation. The useless information in image was removed. Then Roberts operator of classical gradient operators was used to get the image contour. Some important properties such as increment, idempotency, anti-extension and displacement invariability were proposed and proved. This method was experimented on MR-CT images. The results show that the contours of MR-CT images were obtained satisfactorily. The simulating experimental results show that the method getting attribute threshold automatically can retain the important information of image effectively. The new contour extraction method has the strong anti-noise ability and the shapes of contours are kept good.
作者 黎燕 李刚
出处 《计算机应用》 CSCD 北大核心 2009年第12期3343-3345,共3页 journal of Computer Applications
关键词 轮廓提取 属性阈值 属性直方图 梯度算子 MR—CT contour extraction attribute threshold attribute histogram gradient operator MR-CT
  • 相关文献

参考文献11

  • 1张二虎 ,卞正中 ,张燕 ,段敬红 ,吴学毅 .基于ICP和SVD的视网膜图像特征点配准算法[J].小型微型计算机系统,2004,25(10):1811-1813. 被引量:6
  • 2MOIGNE LE J, CAMPBELL W J, CROMP R F. An automated parallel image registration technique based on the correlation of wavelet features [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(7) : 1849 -1864.
  • 3McLAUGHLIN P W, NARAYANA V, KESSLER M, et al. The use of mutual information in registration of CT and MRI datasets post permanent implant [J]. Brachytherapy, 2004 3(2): 61 -70.
  • 4ROCHE A, PENNEC X, MALANDAIN G, et al. Rigid registration of 3-D ultrasound with MR images: A new approach combining intensity and gradient information [ J]. IEEE Transactions on Medical Imaging, 2002, 20(10) : 1038 - 1049.
  • 5周昌雄,于盛林.基于区域内一致性和区域间差异性的图像分割[J].中南大学学报(自然科学版),2005,36(4):668-672. 被引量:7
  • 6CHAN T F, VESE L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001,10(2):266 -277.
  • 7GAO S, BUI T D. Image segmentation and selective smoothing by using Mumford-Shah model [J]. IEEE Transactions on Image Processing, 2005, 14(10) : 1537 - 1549.
  • 8HAN JING-FENG, BENJAMIN B, MARC D, et al. Munfford-Shah model for one-to-one edge matching [J]. IEEE Transactions on Image Processing, 2007, 11(16) : 2720 -2732.
  • 9DU XAIO-JUN, BUI T D. A new model for image segmentation [J]. IEEE Signal Processing Letters, 2008, 15( 1): 182 -185.
  • 10BREEN E J, JONES R. Attribute openings, thinnings and granulometries [J]. Computer Vision and Image Understanding, 1996,64 (3): 377 -389.

二级参考文献21

  • 1[1]van den Elsen P A , Pol E J, Viergever M A. Medical image matching-a review with classification[J]. IEEE EMBS., 1993,12(3):26-39.
  • 2[2]Besl P J,Mckay N D. A method for registration 3-D shapes[J]. IEEE Trans PAMI,1992,14(2):239~256.
  • 3[3]Cheng Yun-peng, Zhang Kai-yuan, Xu Zhong. Matrix theory[M].Xian:Northwestern Polytechnical University Press.Jun,2001.
  • 4[4]Er-hu Zhang,Yan Zhang and Tian-xu Zhang. Automatic retinal images registration based on blood vessel feature point[C]. Proceedings of 2002 International Conference on Machine Learing and Cybernetics.Beijng,2001,4.
  • 5[5]程云鹏,张凯院,徐仲编著.矩阵论[M].西安.西北工业大学出版社.2001,6.
  • 6Kittler J, Illingworthv I. Minimum error thresholding[J]. Patter Recognition, 1986, 19(1):41-47.
  • 7Cho S, Haralick R, Yi S. Improvement of Kittler and Illingworth's minimum error thresholding [J]. Patter Recognition, 1989, 22(5): 609 - 617.
  • 8Ostu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on System Man and Cybernet, 1978, 8(1): 62-66.
  • 9Sandor T, Metcalf D, Kim Y J. Segmentation of brain CT images using the concept of region growing [J].Biomed Comput, 1991(29) : 133 - 147.
  • 10Levitt T S, Hedgcock M W, Dye J W, etal. Bayesian inference for model-based segmentation of computed radiographs of the hand [J]. Artificial Intelligence in Medicine, 1993, 5(4): 365-387.

共引文献355

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部