期刊文献+

基于混合卡尔曼粒子滤波算法的期权定价方法 被引量:2

Option pricing based on mixture Kalman particle filter
下载PDF
导出
摘要 针对金融领域的期权定价问题,为提高粒子滤波算法对期权价格的估计精度,提出使用混合卡尔曼粒子滤波算法(MKPF)进行期权价格预测,该算法使用Unscented卡尔曼滤波器和扩展卡尔曼滤波器作为混合建议分布产生重要采样密度。在某一时刻,每一个粒子首先经过Unscented卡尔曼滤波器更新得到一个状态估计值,然后以该估计值作为扩展卡尔曼滤波器的先验估计再次更新粒子,得到该时刻最终的估计值。实验中针对经典的Black-Scholes期权定价公式,使用包括MKPF算法在内的4种算法对期权价格进行预测,结果表明MKPF算法预测的期权价格与真实期权价格的误差最小,证明了MKPF算法在期权定价问题中的有效性。 In order to improve the estimation performance of particle filters in option pricing, a method, called Mixture Kalman Particle Filter (MKPF), was used to solve the problems. The MKPF used Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) as mixture proposal distribution. At certain time, each particle was firstly updated by the UKF to get a state estimation; thereafter, this estimation was used as the prior of the EKF, in which the particle was updated again to gain the final estimation of the state. The authors used the classical Black-Scholes (B-S) model in the experiment in order to evaluate the performance of the newly proposed method. The experimental results show that the MKPF outperforms other algorithms, which shows the validity of the MKPF algorithm in option pricing.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3406-3408,共3页 journal of Computer Applications
基金 大连东软信息学院青年科研基金资助项目(NEUSOFTIIT20080005)
关键词 粒子滤波 期权定价 建议分布 B—S模型 particle filter option pricing proposal distribution B-S model
  • 相关文献

参考文献9

  • 1DOUCT A, de FREITAS J F G, GORDON N J. Sequential Monte Carlo methods in practice [M]. New York: Springer-Verlag, 2001.
  • 2NIRANJAN M. Sequential tracking in pricing financial options using model based and neural network approaches [C]// MOZER M C, JORDAN M I, PETSCHE T. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996:960-966.
  • 3van der MERWE R, DOUCET A, de FREITAS N, et al. The unscented particle filter [ EB/OL]. [ 2009 - 04 - 10]. http://citeseerx. ist. psu. edu/viewdoc/download; jsessionid = 643DO9503BDB 467554567134051C0248?doi = 10. 1. 1.36. 5577&rep = repl&type = pdf.
  • 4FREITAS JFG, NIRANJAN M, GEE A H, et al. Sequential Monte Carlo methods to train neural network models [ J]. Neural Computation, 2000, 12(4) : 955 -993.
  • 5SHEU H J, LIU C L. The credit risk pricing with particle filter approach [ C]//Proceedings of the 9th Joint Conference on Information Systems. Kaohsiung: Atlantis Press, 2006.
  • 6AIUBE F A L, BAIDYA T K N, TITO E A H. Analysis of commodity prices with the particle filter [ J]. Energy Economics, 2008 (30) : 597 - 605.
  • 7RAMBHARAT B R, BROCKWELLY A E. Sequential Monte Carlo pricing of American-style options under stochastic volatility models [R]. Durham, North Carolina: Duke University, 2006.
  • 8JASRA A. Sequential Monte Carlo methods for option pricing [R]. London, UK: Imperial College London, Department of Mathematics, 2008.
  • 9王法胜,赵清杰.一种用于解决非线性滤波问题的新型粒子滤波算法[J].计算机学报,2008,31(2):346-352. 被引量:37

二级参考文献24

  • 1Deng Xiao-Long, Xie Jian-Ying, Guo Wei-Zhong. Bayesian target tracking based on particle filter. Journal of Systems Engineering and Electronics, 2005, 16(3) : 545-549
  • 2Chang Cheng, Ansari Rashid. Kernel particle filter for visual tracking. IEEE Signal Processing Letters, 2005, 12(3): 242-245
  • 3Gustafsson F, Gunnarsson F et al. Particle filters for positioning, navigation and tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437
  • 4Kalsson Rickard. Particle filtering for positioning and tracking applications [Ph. D. dissertation]. Department of Electrical Engineering, Linkopings Universitet, 2005
  • 5Fox D, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3):24-33
  • 6Rekleitis I M. A particle filter tutorial for mobile robot localization. Montreal, Quebec, Canada: Centre for Intelligent Machines, McGill University: Technical Report TM-CIM- 04-02, 2004
  • 7Thrun S, Fox D, Burgard W, Dellaert F. Robust monte carlo localization for mobile robots. Artificial Intelligence, 2001, 128(1-2): 99-141
  • 8Kwok C, Fox D, Meila M. Real-time particle filters. Proceedings of the IEEE, 2004, 92(3): 469-484
  • 9Merwe R, Doucet A, de Freitas Nando, Wan Eric. The unscented particle filter. Department of Engineering, Cambridge University: Technical Report CUED/F-INFENG/TR 380, 2000
  • 10Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422

共引文献36

同被引文献13

引证文献2

二级引证文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部