期刊文献+

OpenMesh环境下的Laplacian编辑及其改进

Laplacian editing and its improvement on OpenMesh platform
下载PDF
导出
摘要 Laplacian编辑通过保持Laplacian坐标的法向量来保持细节,是一种简单易行的编辑方法。介绍该算法在OpenMesh平台上的具体实现。考虑到编辑过程要求解维数为顶点个数的线性方程组,引入重心坐标来表示模型顶点,从而大大减少了方程组的未知量个数,最后对实验结果作详细的讨论与分析。 Through maintaining the normal component of Laplacian coordinates to preserve high frequency details, Laplacian editing is a simple but effective way to deform meshes. Here, the authors implemented this algorithm on the OpenMesh platform. Considering that a linear system with high dimension needed to be solved, the baryeentric coordinates are introduced to represent the mesh in order to greatly reduce complexity. Finally, experimental results were presented and analyzed in detail.
出处 《计算机应用》 CSCD 北大核心 2009年第12期3449-3452,共4页 journal of Computer Applications
关键词 网格 编辑 拉普拉斯算子 交互 mesh editing Laplacian operator interaction
  • 相关文献

参考文献12

  • 1SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]// SIGGRAPH 86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1986: 151-160.
  • 2ZORIN D, SCHRODER P, SWELDENS W. Interactive multiresolution mesh editing[ C]//SIGGRAPH 1997. New York: ACM Press, 1997:256-265.
  • 3LIPMAN Y, SORKIN O, COHEN-OR D, et al. Differential coordinates for interactive mesh editing[C]// Proceedings of the Shape Modeling International 2004. Washington, DC: IEEE Computer Society, 2004:181 - 190.
  • 4SORKINE O, COHEN-OR D, LIPMAN P, et al. Laplacian surface editing[ C]// Proceedings of the 2004 Eurographics. New York: ACM Press, 2004:175 - 184.
  • 5WU HY, PAN CHUN-HONG, YANG QING, et al. Mean-value Laplacian coordinates for triangular meshes[ C]//2006 International Conference on Computer Graphics, Imaging and Visualization. Washington, DC: IEEE Computer Society, 2006:156 - 160.
  • 6HUANG JIN, SHI XIAO-HAN, LIU XIN-GUO, et al. Subspaee gradient domain mesh deformation [J]. ACM Transactions on Graphics, 2006,25(3) : 1126 - 1134.
  • 7BOTSCH M, STEINBERG S, BISCHOFF S, et al. OpenMesh - A generic and efficient polygon mesh data structure [ EB/OL]. [ 2009 -04 - 10]. http://www. opensg. org/OpenSGPLUS/finishingevent/OpenMesh-1-0-0. pdf.
  • 8JIN S, LEWIS R R, WEST D. A comparison of algorithms for vertex normal computation[J]. The Visual Cmnputer, 2005, 21 (1/2) : 71 - 82.
  • 9GOLUB G H, Van LOAN C F. Matrix Computations[ M]. 2nd ed. Bahirnore: The Johns Hopkins University Press, 1989.
  • 10HEATH M T. Scientific Computing: An introduction survey[M].影印版.北京:清华大学出版社,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部