摘要
通过研究分圆多项式Φn(a,b)在n的两个素因子处的离散赋值,首先给出Gn(Q)是K2Q的子群时,Φn(a,b)所需满足的丢番图方程,然后证明了G55(Q)不是K2Q的子群,从而部分证明了B rowk in的一个猜想。
This paper, through investigating discrete valuation of cyclotomic polynomial Фn ( a, b) where n has two prime factors, presents the diophantine equation when Go (Q) is a subgroup of K2Q, then it proves that G55 (Q) is not a subgroup of K2Q, which confirms a special case of the conjecture proposed by Browkin.
出处
《长春大学学报》
2009年第10期5-6,共2页
Journal of Changchun University
基金
江苏省自然科学基金资助项目(BK2008365)
关键词
丢番图方程
分圆多项式
K2群
diophantine equation
cyclotomic polynomial
K2 group