期刊文献+

全局性模态词与基本模态语言的扩充

Global Modality and Extension of Basic Modal Languages
下载PDF
导出
摘要 模态语言是讨论关系结构的一种简洁的语言。基本模态语言是仅有一个模态算子◇的模态语言,用ML(◇)表示此语言,但基本模态语言对框架关系的表达力并不是完全的,加入新的模态算子是增强模态语言表达力的方法之一。在基本模态语言ML(◇)基础上增加全局性模态词"E"得到ML(◇,E)语言,这种更丰富的语言对关系模型和关系框架的表达力明显强于基本模态语言。 Modal languages are simple languages for talking about relational structures. The basic modal language has only one unary modal operator ◇, which was denoted as ML(◇). Yet the basic modal language was not complete over relational structures. Adding new modalities was the way of boosting modal expressivity. Enriching basic modal language ML(◇) with global modality 'E', we got language ML(◇, E). This enriched language gained expressivity at the level of relation frames and relation models was more clear than that of the basic one,
作者 王辉
出处 《辽宁工业大学学报(自然科学版)》 2009年第5期335-338,共4页 Journal of Liaoning University of Technology(Natural Science Edition)
关键词 模态逻辑 全局性模态词 模态语言 modal logic global Modality modal languages
  • 相关文献

参考文献6

  • 1P Blacburn, M de Rijike, Y Venema. Modal Logic[M]. Cambridge University Press, 2002.
  • 2A N Prior. Past, Present and future[M]. Oxford University Press, 1957.
  • 3V Goranko, S Passy. Using the universal modality: gains and questions[J]. Journal of Logic and Computation, 1992(2): 5-30.
  • 4B ten Cate. Model theory for extended modal languages[M]. ILLC Dissertation Series DS, 2005.
  • 5刘新文,余俊伟.摹略万物之然,论求群言之比——模态逻辑新观念述评[J].哲学动态,2005(12):26-31. 被引量:3
  • 6裘江杰.模态可定义的一个必要条件.哲学动态,2006,:15-18.

二级参考文献9

  • 1H.Andréka,J.Van Benthem & I.Németi,"Modal Logic and Bounded Fragments of Predicate Logic,"Journal of Philosophical Logic,Vol.27,1998,pp.217 - 274.
  • 2J.van Benthem.,"Modal Logic," in D.Jacquette (ed.) A Company to Philosophical Logic,Oxford:Blackwell,2002.
  • 3P.Blackburn,M.de Rijke & Y.Venema,Modal Logic,Cambridge University Press,2001.
  • 4P.Blackburn,J.van Benthem & F.Wolter,Handbook of Modal Logic,Elsevier,2005.
  • 5A.Chagrov & M.Zakharyashev,Modal Logic,Oxford:Clarendon Press,1997.
  • 6D.Gabbay,A.Kurucz,F.Wolter & M.Zakharyaschev,Many-Dimensional Modal Logics:Theory and Applications,Elsevier,2003.
  • 7R.Goldblatt,Mathematics of Modality,CSLI Lecture Notes Vol 43,Stanford,CA,1993.
  • 8R.Goldblatt,"Mathematical Modal Logic:a View of its Evolution," Journal of Applied Logic,Vol.1,Nos.5 - 6,2003,pp.309 - 392.
  • 9M.Kracht,Tools and Techniques in Modal Logic,Elsevier,1999.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部