期刊文献+

分步式卫星图像检索 被引量:3

Stepwise satellite image retrieval
原文传递
导出
摘要 对于大型遥感图像数据库,如何快速有效的检索到需要的图像是一个关键问题。虽然许多不同的检索技术被设计用于减少需要检索的目标图像的数量,可是绝大多数检索技术都是基于低级特征并且没有或很少考虑高级语义信息。因此使用这些检索技术,检索到的图像在低级特征空间比较相似而在语义方面却关系不大。为了解决这一问题,本文提出了一种分布式卫星图像检索方案。该方案首先利用贝叶斯网络预选一组与用户查询目的相关的候选图像,然后再利用计算代价更高的基于区域的相似度度量方法来对候选图像重新排序并返回给用户。这样检索到的图像不但与用户的查询目的高度相关,而且与查询图像有着相似的低级信号特征。另外,由于候选图像比数据库中存储的图像要少的多,因此本文提出的检索方案大大减少了对大型数据库的检索时间。 For large remote sensing image databases, it is very necessary to retrieve the required images quickly and efficiently. Although a variety of retrieval techniques have been designed to reduce the number of the candidate images, most techniques are based on low-level features and consider little or no high level semantic information. Therefore, when applying these techniques, the retrieved images are very similar in the low level feature space but often semantically irrelevant. To solve the problem, the paper proposed a stepwise satellite image retrieval scheme. Firstly, the scheme utilizes the Bayesian network to pre-select a set of candidate images that are semantically relevant to the user' s query intention. Then the scheme re-sorts the candidate images based on the region-based similarity measurement, which are more computational complex. Experimental results have shown that the retrieved images are not only highly related to the user' s query intention but also have the similar low level signal characteristics with the query image. In addition, since the number of the candidate images is greatly less than that of the stored images, the proposed scheme significantly reduces the retrieval time.
出处 《测绘科学》 CSCD 北大核心 2009年第6期53-55,共3页 Science of Surveying and Mapping
关键词 遥感图像数据库 卫星图像检索 低级特征 语义 相似度度量 remote sensing image database satellite image retrieval low-level feature semantic, similarity measurement
  • 相关文献

参考文献13

  • 1Cox I J, Miller M L, Minka T P, Papathomas T V, Yianilos PN The Bayesian image retrieval system. Pi- cHunter: Theory, implementation, psychophysical experiments [ J ] . IEEE Transactions on Image Processing, 2000, 9(1): 20 - 37.
  • 2He X, Kingo, Ma W Y, Li M, Zhang H. Learning a semantic space from user' s relevance feedback for image retrieval [ J ] . IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13( 1 ) : 39 - 48.
  • 3Lee C, Ma W Y, Zhang H J Information embedding based on user' s relevance feedback for image retrieval [ C ] . Proceeding of the SPIE Conference on Multimedia Storage and Archiving Systems, 1999, 5, pp. 20 - 22.
  • 4Li M. Chen Z, Zhang H. Statistical correiation analysis in image retrieval. Pattern Recognition, 2002, 35 (12) : 2687 - 2693.
  • 5Li Y, Bretchneider T. Semantic sensitive satellite image retrieval [ J ] . IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4) : 853-860.
  • 6Liu W, Dumais S, Sun Y, Zhang H. Semi-automatic image annotation [ C ] //Proceedings of the Conference on Human-Computer Interaction, 2001, pp. 326 - 333.
  • 7Picard R W-, Minka, T PVision texture for annotation [J] . Multimedia System, 1995, 3:3 - 14.
  • 8Rui Y, Huang T S, Mehrotra S. Content-based image retrieval with relevance feedback in MARS [ C ] // Proceedings of the IEEE International Conference on Image Processing, 1997:815 - 818.
  • 9Rui Y, Huang T S, Ortega M, Mehrota S. Relevance feedback: A power tool for interactive content-based image retrieval [J] . IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 644 - 655.
  • 10Sahon G. Automatic text processing [ R] . Reading, Mass. , Addision-Wesley.

同被引文献11

  • 1Li Y K.Semantic-Sensitive Remote Sensing Imagery Retrieval[M].Beijing:China Environmental Press,2014:1-7.
  • 2Li Y K,Yang S W,Liu T,et al.Comparative assessment of semantic-sensitive satellite image retrieval:Simple and context-sensitive Bayesian networks[J].International Journal of Geographical Information Science,2012,26(2):247-263.
  • 3Wang J,Li J,Wiederhold G.SIMPLIcity:Semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947-963.
  • 4Tian Y M,Wu Z L,Meng L N.A region-interactive retrieval model based on IRM algorithm[C]//Proceedings of the 20055th International Conference on Information Communications and Signal Processing.Bangkok:IEEE,2005:692-695.
  • 5Zakariya S M,Ali R,Ahmad N.Combining visual features of an image at different precision value of unsupervised content based image retrieval[C]//Proceedings of 2010 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC).Coimbatore:IEEE,2010:1-4.
  • 6Wang M,Song T.Remote sensing image retrieval by scene semantic matching[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2874-2886.
  • 7Zhuang D W,Wang S J.Content-based image retrieval based on integrating region segmentation and relevance feedback[C]//Proceedings of 2010 International Conference on Multimedia Technology (ICMT).Ningbo:IEEE,2010:1-3.
  • 8林明泽,李轶鲲,安新磊,李文胜,连海强.简单贝叶斯网络的遥感图像检索[J].云南民族大学学报(自然科学版),2010,19(1):67-70. 被引量:3
  • 9张兵.智能遥感卫星系统[J].遥感学报,2011,15(3):415-431. 被引量:62
  • 10夏定元,付翩,刘丽端.一种综合区域匹配的图像检索改进算法[J].计算机工程与应用,2012,48(26):197-200. 被引量:2

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部