期刊文献+

具HollingⅡ类功能反应的多时滞捕食-食饵系统的全局性质 被引量:2

Global Behavior of Solutions in a Prey-Predator System with Two Delays and HollingⅡFunctional Response
原文传递
导出
摘要 本文研究了一类具HollingⅡ功能反应的捕食-食饵系统,首先用Cook等人建立的关于超越函数的零点分布定理,研究了一类多时滞捕食-食饵系统的正平衡点的稳定性及局部Hopf分支。进而,再结合吴建宏等人的用等变拓扑度理论建立起的一般泛函微分方程的全局Hopf分支定理,进一步研究了该系统的全局Hopf分支的存在性。 A prey-predator system with Holling Ⅱ functional response is discussed in this paper. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed preypredator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Furthermore, based on the global Hopf bifurcation theorem for general function differential equations, which was established by J. Wu etc. using degree theory methods, the existence of global Hopf bifurcation is investigated.
出处 《生物数学学报》 CSCD 北大核心 2009年第3期410-418,共9页 Journal of Biomathematics
关键词 时滞 稳定性 HOPF分支 Delay Stability Hopf bifurcation
  • 相关文献

参考文献4

二级参考文献32

  • 1He X Z. Stability and delays in a predator-prey system[J]. J Math Anal Appl, 1996, 198(2):355-370.
  • 2Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynarnics.[M] Mathematics and its Applications 74, Kluwer Academic Publishers Group, Dordrecht, 1992.
  • 3Zhao X, Hutson V. Permanence in Kolmogorov periodic predator-prey models with diffusion[J]. Nonlinear Analysis TMA, 1994, 23(5):651-668.
  • 4Leung A. Conditions for global stability concerning a prey-predator model with delay effects[J]. SIAM J Appl MAth, 1979, 36(2):281-286.
  • 5Kuang Y. Delay Differential Equations with Application in Population Dynamics[M]. in the series of Mathematics in Science and Engineering. Boston: Academic Press, 1993, 191.
  • 6Cao Y, Gard T C. extinction in predator-prey model with time delay[J], Math Biosci, 1993, 112(2):197-210.
  • 7Wang W D, Ma Z E. Harmless delays for uniform persistence[J]. J Math Anal Appt, 1991, 158(1):256-268.
  • 8Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differentiat Equations[M]. Berlin: SpringerVerlag, 1977, 40-41.
  • 9Ma, Z., Stability of predation models with time delay [J], Applicable Analysis, 22 (1986),169-192.
  • 10Freedman, H. I. & Rao, V. S. H., Stability criteria for a system involing two time delays[J], SIAM J. Appl. Anal., 46(1986), 552-560.

共引文献38

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部