期刊文献+

矩条件参数化3带对称正交小波

Parametrizing rank 3 symmetric orthogonal wavelets by discrete moments
下载PDF
导出
摘要 对具有消失矩性质的3带对称正交小波进行参数化,给出正交小波的几个重要性质,同时讨论滤波器系数长度、对称中心点、消失矩和离散矩之间的联系,通过放弃线性方程组中的几个消失矩条件来引入尺度函数的三阶离散矩作为参数。给出了构造3带正交对称小波滤波器的约束方程组的算法,计算得出一组含有1个参数的9长滤波器系数的准确表达式。本文给出的构造方法算法易于理解和推广,求解过程相对简单。 The paper discuss parametrizations of filters corresponding to with several vanishing moments. After recalling some properties of rank 3 orthogonal wavelets, relations between the number of filters, symmetry, vanishing moments and discrete moments are discussed. The paper give up some vanishing moment conditions, which correspond to linear constraints on the filters, and introduce discrete moments of the filters as parameters. An algorithm is provided for constructing system equationns for rank 3 orthogonal wavelets filter coefficients. Finally, the associated several families examples with one-parameter are presented explicitly. This paper compute one example using algorithm, the algorithm is easy to be understood and generalize, the process of computing are easier.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第B11期124-126,共3页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 3带正交小波 消失矩 离散矩 rank 3 orthogonal wavelets vanishing moments discrete moments
  • 相关文献

参考文献4

  • 1Chui L. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3 [J ]. Applied and Computational Harmonic Analysis, 1995, 2: 21-51.
  • 2崔丽鸿,程正兴.M带紧支撑正交对称复尺度函数的构造[J].高等学校计算数学学报,2003,25(2):160-166. 被引量:2
  • 3Regensburger G. Parametrizing compactly supported orthonormal wavelets by discrete moments [ J ]. AAECC. 2007, 18:583 - 601.
  • 4Buehberger B. Bases and systems theory [ J ]. Multidimensional Systems and Signal Processing, 2001, 12(3): 223 - 251.

二级参考文献11

  • 1杨守志,程正兴.紧支撑正交小波的构造[J].工程数学学报,1998,15(2):23-28. 被引量:11
  • 2Chui C.K 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 3Daubechies, I.. Ten Lecture on Wavelets. CBMSNSF serics in Applied Math, SIAM Publ,Philadelphia, 1992.
  • 4Chui, C. K. and Lian, J.. Construction of compactly supported symmetric and anti-symmetric orthonormal wavelets. Appl. Comput. Harmon. Anal., 1995,2:21-51.
  • 5Bi, N., Dai, X. and Sun, Q.. Construction of compactly supported M-band wavelets. Appl.comput. Harmon. Anal., 1999, 6:113-131.
  • 6Shui, P.L., Bao, Z. and Zhang, X.D.. M-band compactly supported orthogonal symmetric interpolating scaling functions. IEEE Trans. Signal Processing, 1993, 49:1704-1713.
  • 7Belzer, B., Lina, J. M. and Villasenor, J.. Complex, liner-phase filters for efficient image coding.IEEE Trans. Signal Processing, 1995, 43:2425-2427.
  • 8Lawton, W.. Applications of complex valued wavelet transforms to subband decomposition.IEEE Trans. Signal Processing, 1993, 41:3566-3568.
  • 9Zhang, X. P., Desai, M. D. and Peng, Y. N.. Orthogonal complex filter banks and wavelets:Some properties and design. IEEE Trans. Signal Processing, 1999, 47:1309-1048.
  • 10Steffen, P., Heller, P. N. and Gopinath, R. A.. et al, Theory of regular M-band wavelet bases.IEEE Trans. Signal Processing, 1993, 44:3497-3510.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部