期刊文献+

支持向量回归盲检测16PSK信号

Blind Detection of 16PSK Signal Using Support Vector Regression
下载PDF
导出
摘要 鉴于目前信号盲检测算法主要依赖二阶或高阶统计量,均需要大数据量作为基础。而基于小数据量的高阶PSK信号盲检测算法迄今未见。研究了仅依赖小数据量的盲检测16PSK信号算法,采用支持向量回归方法并采用线性ε-不敏感损失函数将16PSK信号盲检测问题转化为无约束优化问题,并采用迭代算法求解该优化问题,进而盲检测16PSK信号。算法验证中采用经典移动通信复数信道进行仿真和分析该方法的性能。 Most algorithms of blind detection are based on second-order or high-order statistics, all of which need a large data block. Blind detection of high-order PSK(phase shift keying) signal based on short data block hasn' t been presented according to references we found. This paper focuses on studying the algorithm of 16PSK signal blind detection depends on a short data block. The problem of 16PSK signal blind detection is transformed to solve unconstrained optimization problem by using support vector regression and adopting linear ε-insensitive loss function. Moreover, an iterative method is used to solve the optimization problem of blind detection of 16PSK signal. Finally, a classic mobile communications complex channel is adopted to simulate and analyze the performance of this novel algorithm and its characteristics.
出处 《南京邮电大学学报(自然科学版)》 2009年第5期50-53,64,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60772060) 南京邮电大学校科研基金(NY207056)资助项目
关键词 支持向量回归 盲检测 损失函数 16PSK support vector regression blind detection loss function 16PSK
  • 相关文献

参考文献10

  • 1DING Zhi, LI Ye. Blind Equalization and Identification [ M ]. New York : Marcel Dekker,2002.
  • 2GIANNAKS G B, HUA Yingbo, STOICA P, et al. Signal Processing Advances in Wireless and Mobile Communications, Trends in Channel Estimation and Equalization[ M]. Beijing: Post & Telecommunications Press,2002.
  • 3PINCHAS M, BOBROVSKY B Z. A Novel HOS Approach for Blind Channel Equalization [ J ]. IEEE Trails on Wireless Communications, 2007,6 (3) :875 -886.
  • 4LI Qingyu, BAI E rwei, YE Yingu. Blind Channel Equalization and ε- approximation Algorithms [ J]. IEEE Trans on Signal Processing, 2001,49( 1 ) :2823 -2831.
  • 5BAI Erwei, LI Qingyu, ZHANG Zhiyong. Bhnd Source Separation/ Channel Equalization of Nonlinear Channels with Binary Inputs[ J]. IEEE Trans on Signal Processing,2005,53 (7) :2315 -2323.
  • 6HAN D H,PRINCIPE J C,YANG Liuqing,et al. Robust Blind SIMO Channel Estimation Using Adatron [ C ]//Proc of ICASSP' 2006. Piscatway:Institute of Electrical and Electronics Engineers Inc. 2006, 4 : 125 - 128.
  • 7SANTAMARIA I, PANTALEON C, VIELVA L, et al. Blind Equalization of Constant Modulus Signal Using Support Vector Maehines[ J]. IEEE Trans on Signal Processing ,2004,52 (6) :1773 -1782.
  • 8ZHU Jianke, STEVEN C, LYU M. Robust Regularized Kernel Regression, Systems [ J ]. IEEE Trans on Man and Cybernetics-Part B, 2008,38(6) :1639 - 1644.
  • 9ROJO-ALVAREZ J L,MARTINEZ-RAMON M,PRADO-CUMPLIDO M, et al. Support Vector Method for Robust ARMA System Identification [ J ]. IEEE Trans on Signal Processing,2004,52 ( 1 ) : 155 - 164.
  • 10CHERKASSKY V, MA Yunqian. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression [ J ]. Neural Networks,200d, 17 ( 1 ) :113 - 126.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部