摘要
针对耦合微观分子动力学(MD)和宏观有限元方法(FE)的多尺度模拟,提出一类新的基于贡献单元法的网格守恒重映算法.由于物理量是由有限元节点以及相应区域的原子信息通过积分重构得到的,对结构和非结构网格都能适用.对于未知量定义在顶点的情形,引入辅助网格.数值例子验证了算法的准确性和有效性.
A conservative remapping algorithm based on donor-cell method for multiscale dynamic simulation is proposed which couples micro molecular dynamics (MD) simulation with macro finite element (FE) method. Since physical quantities are obtained with integral reconstruction from information of FE nodes and their underlying MD atoms, the algorithm can be applied to both structured and unstructured meshes. An auxiliary mesh is introduced for vertex-centered unknowns. Accuracy and efficiency of the method are validated with numerical experiments.
出处
《计算物理》
EI
CSCD
北大核心
2009年第6期791-798,共8页
Chinese Journal of Computational Physics
基金
Supported by NSFC(No.10826107,10771019)
关键词
守恒重映
多尺度模拟
有限元方法
分子动力学计算
conservative remapping
multiscale dynamic simulation
finite element method
MD computation