期刊文献+

多尺度模拟中网格守恒重映算法(英文)

Conservative Remapping Algorithm in Multiscale Dynamic Simulation
下载PDF
导出
摘要 针对耦合微观分子动力学(MD)和宏观有限元方法(FE)的多尺度模拟,提出一类新的基于贡献单元法的网格守恒重映算法.由于物理量是由有限元节点以及相应区域的原子信息通过积分重构得到的,对结构和非结构网格都能适用.对于未知量定义在顶点的情形,引入辅助网格.数值例子验证了算法的准确性和有效性. A conservative remapping algorithm based on donor-cell method for multiscale dynamic simulation is proposed which couples micro molecular dynamics (MD) simulation with macro finite element (FE) method. Since physical quantities are obtained with integral reconstruction from information of FE nodes and their underlying MD atoms, the algorithm can be applied to both structured and unstructured meshes. An auxiliary mesh is introduced for vertex-centered unknowns. Accuracy and efficiency of the method are validated with numerical experiments.
出处 《计算物理》 EI CSCD 北大核心 2009年第6期791-798,共8页 Chinese Journal of Computational Physics
基金 Supported by NSFC(No.10826107,10771019)
关键词 守恒重映 多尺度模拟 有限元方法 分子动力学计算 conservative remapping multiscale dynamic simulation finite element method MD computation
  • 相关文献

参考文献3

二级参考文献17

  • 1李岳生,胡日章.多元散乱数据的样条插值法[J].高等学校计算数学学报,1990,12(3):215-226. 被引量:13
  • 2吴子牛 庄逢甘 等.求解定常N-S方程的各向异性笛卡尔网格法研究.第二届青年科技论文报告会论文集[M].北京,1996,1997.21-46.
  • 3水鸿寿.数值网格构造方法、理论及应用.流体力学数值方法论文集.第四届全国流体力学数值方法讨论会[M].南京,1989.36-44.
  • 4[1]Hirt C W,Amsden A A and Cook J L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].Journal of Computational Physics,1974,14:227-253.
  • 5[2]Horak H G,Jones E M,Kodis J W and Samdford II M T.An algorithm for the discrete rezoning of Lagrangian meshes [J].Journal of Computational Physics,1978,26:277-284.
  • 6[3]Dukowicz J K.Conservative rezoning(remapping)for general quadrilateral meshes [J].Journal of Computational Physics,1984,54:411-423.
  • 7[4]Ramshaw J D.Conservative rezoning algorithm for generalized two-dimensional meshes [J].Journal of Computational Physics,1985,59:193-199.
  • 8[5]Ramshaw J D.Simplified second-order rezoning algorithm for generalized two-dimensional meshes [J].Journal of Computational Physics,1986,67:214-222.
  • 9[6]Dukowicz J K and Kodis J W.Accurate conservative remapping(rezoning)for arbitrary Lagrangian-Eulerian computations [J].SIAM J Sci Stat Comput,1987,8(3):305-321.
  • 10[7]Van Leer B.Towards the ultimate conservative differe-nce scheme V.A second-order sequel to Godunov's method[J].Journal of Computational Physics,1979,32:101-136.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部