期刊文献+

求解多维欧拉方程的二阶非结构网格混合旋转Riemann求解器 被引量:4

A Second-order Hybrid Rotated Riemann Solver for Multi-dimensional Euler Equations on Unstructured Meshes
下载PDF
导出
摘要 将基于旋转近似Riemann求解器的二阶精度迎风型有限体积方法推广到非结构网格,采用基于网格中心的有限体积法,梯度的计算采用基于节点的方法引入更多的控制体模板,限制器的构造采用与非结构化网格相适应的形式.在求解Riemann问题时,沿具有一定物理意义的两个迎风方向,即控制体界面两侧速度差矢量方向及与之正交的方向.能够完全消除基于Riemann求解器的通量差分裂格式存在的激波不稳定或"红斑"现象.为减小计算量,采用HLL和Roe FDS混合旋转格式. A second-order rotational upwind transport scheme for multi-dimensional compressible Euler equations on unstructured meshes is presented. Cell-centered FVM is employed in which gradient calculation is node-based with more neighbor cells. Slope limiter schemes are constructed for unstructured meshes. Numerical fluxes are evaluated by solving two Riemann problems in two upwind directions, including velocity-difference vector and perpendicular direction. The scheme eliminate shock instabilities or carbuncle phenomena in flux-difference splitting type schemes completely. A hybrid rotated Riemann solver is employed to form an economical numeric flux function and base Riemann solvers employ HLL and Roe FDS.
出处 《计算物理》 EI CSCD 北大核心 2009年第6期799-805,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10572075)项目资助
关键词 非结构网格 旋转Riemann求解器 欧拉方程 Riemann求解器 多维格式 激波捕捉 “红斑”现象 unstructured grid hybrid rotated Riemann solver Euler equation Riemann solver multi-dimensional scheme shock capture carbuncle phenomena
  • 相关文献

参考文献3

二级参考文献11

  • 1GODUNOV S. Finite difference methods for numerical computation of discontinuous solutions of the equations of fluid dynamics [J]. Math. Sb. 1959,47:271-290.
  • 2VAN LEER B. Towards the ultimate conservative difference scheme V [J]. J. Comput. Phys., 1979,32:101-136.
  • 3HARTEN A, LAX P. A random choice finite difference scheme for hyperbolic conservation laws [ J]. SIAM J. Numer. Anal., 1981,18:289-315.
  • 4ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes [J]. J. Comput. Phys., 1981,43:357-372.
  • 5HARTEN A, HYMAN J M. Self adjusting grid methods for one-dimensional hyperbolic conservation laws [J]. J. Comput. Phys., 1983,50:235-269.
  • 6HUYNH H T. Accurate upwind methods for the Euler equations [J]. SIAM J . Numer . Anal. ,1995,32:1565-1619.
  • 7QUIRK J. A contribution to the great riemann solver debate [J]. Int. J. Numer. Meth. Fluid Dyn., 1994,18:555-574.
  • 8REN Yu-Xin. A robust shock-capturing scheme based on rotated Riemann solvers [ J ]. Computers and Fluids, 2003, 32:1379-1403.
  • 9WOODWARD P, COLELLA P. Numerical simulations of twodimensional fluid flow with strong shocks [ J]. J. Comput.Phys., 1984,54:115-173.
  • 10汪继文,刘儒勋.间断解问题的有限体积法[J].计算物理,2001,18(2):97-105. 被引量:33

共引文献19

同被引文献28

  • 1田正雨,李桦,范晓樯.六类高超声速激波-激波干扰的数值模拟研究[J].空气动力学学报,2004,22(3):361-364. 被引量:8
  • 2孙宇涛,任玉新.求解多维欧拉方程的二阶旋转输运格式[J].空气动力学学报,2005,23(3):326-329. 被引量:4
  • 3宫翔飞,张树道,江松.界面捕捉Level Set方法的(AMR)数值模拟[J].计算物理,2006,23(4):391-395. 被引量:12
  • 4Gregory H F, Xiaolin Z, Numerical Simulation of Vis- cous Unsteady Type IV Shock-Shoek Interaction with Thermoehemical Nonequilibrium [ R]. AIAA 97-0982.
  • 5Charles W, Pitt F, Holger B. Micro-Ramp Control for Oblique Shoek Wave/Boundary Layer Interactions [R]. A1AA 2007-4115.
  • 6Edney B. Anomalous Heat Transfer and Pressure Distri- butions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock [R]. Stockholm: Aero- nautical Research Inst. of Sweden, FFA Rept. 115, 1968.
  • 7Wieting A R, Michael S H. Experimental Shock-Wave Interference Heating on a Cylinder at Mach 6 and 8[J]. A1AA Journal, 1989, 27( 11 ):1557-1565.
  • 8Wieting A R. Multiple Shock-Shock Interference on a Cylindrical Leading Edge[J]. AIAA Journal, 1992, 30 ( 8 ) : 2073-2079.
  • 9Klopfer G H, Yee H C, Kutler P. Numerical Study of Unsteady Viscous Hypersonic Blunt Body Flows with an Impinging Shock[R]. NASA-TM-100096, 1988.
  • 10Lind C A, Lewis M J. A Numerical Study of the Un- steady Processes Associated with the Type IV Shock In- teraction[ R]. AIAA 93-2479.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部