期刊文献+

基于背景建模和前景建模的红外运动检测

Background and Foreground Modeling-based Infrared Motion Detection
下载PDF
导出
摘要 为抑制了红外图像信噪比低、非静止背景等引起的虚警产生,将基于背景建模和前景建模运动检测(BM-FM)算法引入红外面目标检测中;为抑制因目标与背景对比度低引起的部分目标区域漏检,提出了基于空间邻域信息的前景建模方法(SNFM),利用前一帧图像在像素点邻域内的前景目标点为样本,用核密度估计进行前景建模。试验表明了基于该前景建模方法的BM-FM算法的有效性。 The background and foreground modeling detection method (BM-FM), which is used in infrared moving object detection, can effectively restrains false-positive caused by low signal-noise ratio, nonstationary background. For suppressing false-negative in object field where the intensity is similar with the background, propose a foreground modeling method based on spatial neighborhood information (SNFM), which models the foreground probability for one pixel using pixels which are considered as object points in last frame in the neighborhood of this pixel. The result shows the validity of the BM-FM algorithm based on SNFM.
出处 《火力与指挥控制》 CSCD 北大核心 2009年第11期5-8,共4页 Fire Control & Command Control
基金 国家自然科学基金(60634030 60602056) 高等学校博士学科点专项科研基金(20060699032) 航空科学基金资助项目(2007EC53037)
关键词 前景建模 邻域信息 背景建模 红外 运动检测 foreground modeling, spatial neighborhood information, infrared, moving object detection
  • 相关文献

参考文献8

  • 1Elgammal D H,Davis L. Non-Parametric Model for Background Subtraction[C]// Proc. European Conf. Computer Vision,2000: 751-767.
  • 2Sheikh Y, Shah M. Bayesian Modeling of Dynamic Scenes for Object Detection [J].IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792.
  • 3Li S. Markov Random Fields Models in Computer Vision [C]// IEEE Proc. Int'l Conf. Computer Vision and Pattern Recognition, 1994: 866-869.
  • 4Lin S S. Review.. Extending Visible Band Computer Vision Techniques to Infrared Band Images [R]. Technical Report MS-CIS-01-04, 2001.
  • 5Csaba B, Tamas S. Markovian Framework for Foreground Background Shadow Separation of Real World Video Scenes[C]// Asian Conf. Computer Vision, 2006 : 898-907.
  • 6Yaser S, Mubarak S. Bayesian Object Detection in Dynamic Scenes [C]// IEEE Proc. Int'l Conf. Computer Vision and Pattern Recognition, 2005: 74-79.
  • 7Stauffer C, Grimson W. Learning Patterns of Activity Using Real-Time Tracking [J].IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
  • 8Marko Ha, Matti P. A Texture-based Method for Modeling the Background and Detecting Moving Objects [J].IEEE Trans, Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部