期刊文献+

运动目标轨迹分类与识别 被引量:9

Trajectory Classification and Recognition of Moving Objects
下载PDF
导出
摘要 运动目标轨迹识别是运动分析中的基本问题,其目的是解释所监视场景中发生的事件,对所监视场景中运动目标轨迹的行为模式进行分析与识别,智能地做出自动分类。对轨迹有效性判断后采用K均值聚类,引入改进的隐马尔可夫模型算法,针对轨迹的复杂程度对各个轨迹模式类建立相应的隐马尔可夫模型,利用训练样本训练模型得到可靠的模型参数,计算测试样本对于各个模型的最大似然概率,选取最大概率值对应的轨迹模式类作为轨迹识别的结果,对两种场景中聚类后的轨迹进行训练与识别,平均识别率较高,实验结果表明该方法是有效的。 Trajectory recognition of the moving objects is the basic problem of the movement analysis. The intentions are as follows: interpreting what has happened in surveillance scenes, analyzing and recognizing the trajectory activity patterns of the objects in real scenes, classifying them automatically and intelligently. After judging the validity of the trajectories, use the K-Means to cluster them. Using modified Hidden Markov Model, firstly, aiming at the complex degree of the trajectories, the models are built for every trajectory pattern, and the training samples are used to get the credible parameters of the model, finally, the maximum likelihood probability of the test samples are computed to all of the trained models, the maximum value is saved and the corresponding model is the recognition result. Then train and recognize the samples clustered, the average recognition rate is high, and the method is efficient.
出处 《火力与指挥控制》 CSCD 北大核心 2009年第11期79-83,共5页 Fire Control & Command Control
基金 院青年基金资助项目(407Y504)
关键词 轨迹识别 运动分析 行为模式 隐马尔可夫模型 trajectory recognition, movement analysis, activity pattern, Hidden Markov Model (HMM)
  • 相关文献

参考文献10

  • 1Junghye M, Rangachar K. Activity Recognition based on Multiple Motion Trajectories,Proc[C]// IEEE of the 17th International Conference on Pattern Recognition(ICPR'04)1051-4651/04,2004.
  • 2Faisal B, Ashfaq K, Dan S. Automatic Object Trajectory-Based Motion Recognition using Gaussian Mixture Models[C]//IEEE International Conference on Multimedia & Expt (ICME 2005), 2005. Amsterdam, The Netherlands.
  • 3Owens J, Hunter A. Application of the Self- Organizing Map to Trajectory Classification [C]// In proc. of the third IEEE International Workshop on Visual Surveillance, 2000.
  • 4胡卫明,谢丹,谭铁牛,沈俊.轨迹分布模式学习的层次自组织神经网络方法[J].计算机学报,2003,26(4):417-426. 被引量:15
  • 5Hu W M,Xie ,Tan T N. Senior Member IEEE, A Hierarchical Self-Organizing Approach for Learning the Patterns of Motion Trajectories [J]. IEEE Transactions on Neural Networks, 2004,15 (1) : 35- 38.
  • 6潘奇明,程咏梅,杨涛,潘泉,赵春晖.真实场景运动目标轨迹有效性判断与自动聚类算法研究[J].计算机应用研究,2007,24(4):158-160. 被引量:9
  • 7Fatih P. Trajectory Distance Metric Using Hidden Markov Model based Representation [ M ]. Mitsubishi Electric Research Laboratories Cambridge, MA 02139,USA,2004.
  • 8Johnson N,Hogg D C. Learning the Distribution of Object Trajectories for Event Recognition [M]. Image and Vision Computing, 1996,14 : 609-615.
  • 9Buzan D, Sclaroff S, KoUios G. Extraction and Clustering of Motion Trajectories in Video [M]. Boston University Computer Science Tech, 2004.
  • 10Orina S, O'Hare R, Reilly R. Online Trajectory Classification[M]. P. M. A. Sloot et al. (Eds.): ICCS 2003.

二级参考文献24

  • 1[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746
  • 2[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135
  • 3[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478
  • 4[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454
  • 5[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312
  • 6[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851
  • 7[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615
  • 8[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871
  • 9[9]Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757
  • 10[10]Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behavior. Image and Vision Computing, 2000, 18(9):697~704

共引文献22

同被引文献64

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部