期刊文献+

基于包层多示例主动学习的图像检索 被引量:1

Bag-level multi-instance active learning for image retrieval
下载PDF
导出
摘要 通过详细分析多示例主动学习的特点,提出将多示例主动学习概括为包层、示例层以及混合层次主动学习三种模式;针对包层主动学习,将示例数目统计特征作为重要度量并与样本不确定性相结合,提出一种新的样本选择策略.在Corel数据集上进行实验,与传统的主动学习方法比较表明,该算法能够有效减少学习的样本数,显著提高学习器的效率和性能. By extensively studying the characteristics of active learning in multiple-instance setting, the multiple instance active learning problem (MIAL) was categorized into three paradigms, i. e. bag-level active learning, instance-level active learning and mixture-level active learning. Furthermore, a novel sample selection strategy was proposed to tackle the bag-level MIAL problem, in which the statistical feature of instance number, an important factor in MIL setting, was integrated with the sample uncertainty simultaneously. Experiments were conducted on the Corel image dataset and the results show that, compared with several traditional sample selection strategies, the proposed method can effectively reduce the labor of manual annotating and improve the performance of the multi-instance learner.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第11期1146-1151,共6页 JUSTC
关键词 包层 多示例主动学习 图像检索 bag-level multiple instance active learning image retrieval
  • 相关文献

参考文献15

  • 1Maron O. Learning from ambiguity[D]. Department of Electrical Engineering and Computer Science, MIT, 1998.
  • 2Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89 (1-2) : 31-71.
  • 3Gartner T, Lloyd J W, Flach P A. Kernels and distances for structured data [J]. Machine Learning, 2004, 57(3) :205-232.
  • 4Maron O, Ratan A. Multiple-instance learning for natural scene classification [C]// Proceedings of International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1998: 341-349.
  • 5Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple-instance learning[C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003, 15: 561-568.
  • 6Gartner T, Flach P A, Kowalczyk A, et al. Multiinstance kernels[C]// Proceedings of the Nineteenth International Conference on Machine Learning. Sydney, Australia: Morgan Kaufmann, 2002: 179-186.
  • 7Chen Y, Bi J, Wang J Z. MILES: multiple-instance learning via embedded instance selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 1 931-1 947.
  • 8Schohn G, Cohn D. Less is more: active learning with support vector machines[C]//Proceedings of the 17th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2000: 839-846.
  • 9Tong S, Chang E. Support vector machine active learning for image retrieval[C]// Proceedings of the 9th ACM International Conference on Multimedia. Canada: ACM Press, 2001:107-118.
  • 10Freund Y, Seung H S, Shamir E, et al. Selective sampling using the query by committee algorithm[J]. Machine Learning, 1997, 28(2-3): 133-168.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部