期刊文献+

基于惩罚距离的混合模型分量数自动估计算法 被引量:2

Automatic Estimation Algorithm of Component Number of Mixture Model Based on Penalized Distance
下载PDF
导出
摘要 期望最大化(EM)算法是对有限混合模型进行参数估计的通用算法,然而标准EM算法中所需的混合模型分量数往往是未知的.文中研究了一种采用惩罚性最小匹配距离估计分量数的方法,并结合贪婪EM算法框架,提出了一种可以在进行参数估计的同时快速准确地自动估计高斯混合模型分量数的算法,最后通过一元和二元高斯混合模型的仿真实验验证了该算法的有效性. The expectation-maximization (EM) algorithm is a popular approach to the parameter estimation of the finite mixture model (FMM). A drawback of this approach is that the number of components of the FMM is not known in advance. In this paper, a penalized minimum matching distance-guided EM algorithm is discussed. Then, under the framework of Greedy EM, an automatic algorithm with high speed and accuracy is proposed to esti- mate the component number of the Gaussian mixture model. The effectiveness of the proposed algorithm is finally verified by the simulations of univariate and bivariate Gaussian mixture models.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期101-107,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60772122) 高等学校博士学科点专项科研基金资助项目(20070357001) 安徽省高等学校自然科学研究重点项目(KJ2007A045)
关键词 有限混合模型 分量数 惩罚性最小匹配距离 贪婪EM PARZEN窗 带宽 finite mixture model component number penalized minimum matching distance Greedy EM Parzen window bandwidth
  • 相关文献

参考文献16

  • 1Figueiredo M A T,Jain A K. Unsupervised learning of finite mixture models [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence ,2002,24 ( 3 ) :381-396.
  • 2McLachlan G J, Peel D. Finite mixture models [ M ]. New York :Wiley, 2000:5-7.
  • 3Dempster A P, Laird N M, Rubin D B. Maximum likelihood estimation from incomplete data via the EM algorithm [ J ]. J Royal Statistical Soc B, 1977,39( 1 ) : 1-38.
  • 4McLachlan G J, Krishnan T. The EM algorithm and extensions [ M ]. New York : Wiley, 1997:4-19.
  • 5Akaike H. A new look at statistical model identification [ J ]. IEEE Trans on Automatic Control, 1974,19 (6) : 716 -723.
  • 6Wang H X, Luo B,Zhang Q B,et al. Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm [ J ]. Pattern Recognition Letters, 2004,25 (16) : 1799-1 809.
  • 7Vlassis N, Likas A. A Greedy EM algorithm for Gaussian mixture learning [ J]. Neural Processing Letters, 2002, 15(1) :77-87.
  • 8Verbeek J J, Vlassis N, Krose B. Efficient Greedy learning of Gaussian mixture models [ J ]. Neural Computation, 2003,5 (2) :469-485.
  • 9Luo W. Penalized minimum matching distance-guided EM algorithm [ J ]. Int J Electron Commun (AEU) ,2006,60 (3) : 235-239.
  • 10Parzen E. On estimation of a probability density and mode [ J ]. Annals of Mathematical Statistics, 1962, 33(3) :1065-1076.

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部