期刊文献+

基于多区域联合粒子滤波的人体运动跟踪 被引量:9

People Tracking Based on Multi-regions Joint Particle Filters
下载PDF
导出
摘要 针对视频人体运动跟踪中的遮挡问题,提出了一种基于多区域联合粒子滤波器的跟踪方法.算法把人体划分为多个关键区域,通过基于多区域无向图的联合运动模型,构造联合粒子滤波器,并运用区域关联的观测评估策略对目标状态进行联合预测,从而完成遮挡情况下目标的跟踪.实验结果表明,与基于单区域粒子滤波的跟踪方法相比,本文提出的算法在具有较长时间部分和全部遮挡的跟踪问题上,取得了较好的实验结果. A people tracking algorithm based on multi-regions joint particle filters (MR-JPF) has been proposed in this paper to solve the occlusion problem of people tracking in video. Through locating m.ultiple key regions on human body, the algorithm deals with the occlusion problem by constructing the joint particle filter, which is based on a joint motion model specified by an undirected graph, and on the regions relation based observe-and-estimate scheme. The experimental results have demonstrated that the proposed algorithm is more effective in solving long-time partial or total occlusion problem than the tracking method based on single region particle filter.
出处 《自动化学报》 EI CSCD 北大核心 2009年第11期1387-1393,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60672090)资助~~
关键词 计算机视觉 目标跟踪 多区域 联合粒子滤波 Computer vision, object tracking, multi-regions, joint particle filters
  • 相关文献

参考文献16

  • 1Zhu L, Zhou J, Song J Y. Tracking multiple objects through occlusion with online sampling and position estimation. Pattern Recognition, 2008, 41(8): 2447-2460.
  • 2Zhou S, Chellappa R, Moghaddam B. Appearance tracking using adaptive models in a particle filter. In: Proceedings of the 6th Asian Conference on Computer Vision. Jeju Island, Korea: Mitsubishi Electric Research Laboratories, 2004. 1-6.
  • 3Gennari G, Hager G D. Probabilistic data association methods in visual tracking of groups. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. California, USA: IEEE, 2004. 876-881.
  • 4Blackman S S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
  • 5Gorji A, Menhaj M B. Multiple target tracking for mobile robots using the JPDAF algorithm. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence. California, USA: IEEE, 2007. 137-145.
  • 6Schulz D, Burgard W, Fox D, Cremers A B. Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In: Proceedings of the IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2001. 1665-1670.
  • 7Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819.
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings on Radar and Sonar Processing, 1993, 140(2): 107-113.
  • 9Czyz J, Ristic B, Macq B. A particle filter for joint detection and tracking of color objects. Image and Vision Computing, 2007, 25(8): 1271-1281.
  • 10Pantrigo J J, Sanchez A, Montemayor A S, Duarte A. Multidimensional visual tracking using scatter search particle filter. Pattern Recognition Letters, 2008, 29(8): 1160-1174.

同被引文献81

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部