期刊文献+

Pd粉及Pd_(91.31)Y_(8.50)Ru_(0.19)合金膜的氚老化效应

AGING EFFECTS OF TRITIUM ON Pd POWDERS AND Pd_(91.31)Y_(8.50)Ru_(0.19) ALLOY FILM
下载PDF
导出
摘要 为了解Pd及其合金贮氚(T)老化后.^3He在材料中的存在形式及分布状态.利用XRD与TEM分别分析了贮T老化1.6和3.5 a的Pd粉,以及贮T老化41和295 d的Pd91.31Y8.50Ru0.19合金膜的结构变化.结果表明:T老化使得Pd粉的XRD峰变宽且峰强降低,晶格发生畸变,同时,衍射峰略向低角度偏移,晶格发生膨胀,1.6和3.5 a老化后,晶格常数分别增加0.095%和0.11%;在老化41 d的Pd91.31Y8.50Ru0.19合金膜中,观察到分布均匀、直径约为1 nm的He泡,同时存在高密度的位错及位错环,在老化295 d的样品中,He泡直径略微增加,达1.2-1.4 nm,且分布均匀,位错及位错环密度降低. During tritium(T) treatment,Pd and its alloys will be aged due to solution of ~3He, a product of T decay,in lattices,which changes the microstructure and properties of the materials. The existing and distributing states of ~3He in Pd and Pd_(91.31)Y_(8.50)Ru_(0.19) alloy during T aging were studied by XRD and TEM.XRD results for Pd powders aged up to 1.6 and 3.5 a show that the peaks widen,intensities of peaks reduce and lattice constants increase by 0.095%and 0.11%,respectively. TEM observations show that about 1 nm sized He bubbles appear in Pd_(91.31)Y_(8.50)Ru_(0.19) alloy aged for 41 d,and more dislocations and dislocation loops are observed;after 295 d aging,the He bubbles grow slightly and reach 1.2-1.4 nm in diameter,but the amounts of dislocations and dislocation loops decrease.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第10期1277-1280,共4页 Acta Metallurgica Sinica
关键词 PD Pd_91.31Y_8.50Ru_0.19 氚老化 ~3He He泡 Pd Pd_(91.31)Y_(8.50)Ru_(0.19) tritium aging ~3He He bubble
  • 相关文献

参考文献13

  • 1Lasser R. Tritium and Helium-3 in Metals. Berlin: Spring-Verlag, 1989: 34, 109.
  • 2Wileman R C J, Harris I R. J Less-Common Met, 1985; 109:367.
  • 3Suzuki Y, Kimura S. Nucl Technol, 1993; 103:93.
  • 4Luo D L, Shen C S, Meng D Q. Fusion Sci Technol, 2002; 41:1142.
  • 5Evans J, Harris I R. J Less-Common Met, 1983; 89:407.
  • 6Abell G C, Matson L K, Steinmeyer R H. Phys Rev, 1990; 41B: 1220.
  • 7Fabre A, Decamps B, Finot E, Penission J M, Demoment J, Thiebaut S, Contreras S, Percheron-Guegan A. J Nucl Mater, 2005; 342:101.
  • 8Klevtsov V G, Boitsov I E, Vedeneev A I, Gtagolev M V, Lobanov V N, Malkov I L, Pimanikhin S A, Stengach A V. Fusion Eng Des, 2000; 49-50:873.
  • 9Tebus V, Rivkis L, Dmitrievskaia E, Arutunova G, Golikov I, Ryazantseva N, Filin V, Kapychev V, Bulkin V. J Nucl Mater, 2002; 307-311:966.
  • 10Thiebaut S, Paul-Boncour V, Percheron-Guegan A, Lireacher B, Blaschko O, Maaier C, Tailland C, Lerov D. Phys Rev, 1998; 57B: 10379.

二级参考文献70

  • 1Weaver H T, William Camp J. Phys Rev, 1975; 12:3054
  • 2Camp W J. J Vac Sci Technol, 1977; 14:314
  • 3Raju P G, Michele G. Phys Rev, 2002; 66B: 014105-1
  • 4Bowman R C Jr, Attalla A. Phys Rev, 1977; 16B: 1828
  • 5Bowman R C Jr. Nature, 1978; 271:531
  • 6Rodin A M, Surengants V V. Zh Fiz, Khim, 1971; 45:1094(РоцинАМ, Суреняцвв, ЖФХ,1971; 25: 1094)
  • 7Cost J R, Hickman R G. J Vac Sci Technol, 1975; 12:516
  • 8Khimyi Yu M, Kochemasova L N, Berezhko P G. Zh Fiz Khim, 1979; 7:1997(ХирныйЮМ , КочемасоваЛН,ВережкоПГ. ЖФХ, 1979; 7: 1797)
  • 9Khimyi Yu M, Kochemasova L N. Zh Fiz Khim, 1983; 2:463(ХирныйЮМ, КочемасоваЛН,ЖФХ, 1983; 2: 463)
  • 10Thomas G J, Swansiger W A, Baskes M I. J Appl Phys,1979; 50:6942

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部