期刊文献+

铸态AZ61镁合金热压缩变形组织变化 被引量:6

Microstructure in as-cast AZ61 magnesium alloy during hot compression deformation
原文传递
导出
摘要 利用Gleeble-1500对铸态AZ61镁合金在变形温度200-500℃,应变速率0.001-1s^-1的条件下进行压缩变形;利用显微结构分析和硬度测试等研究不同变形条件下AZ61镁合金的组织和性能,引用Z值(Zener-Hollomon系数)研究温度和应变速率对AZ61镁合金组织的影响,建立再结晶晶粒尺寸与Z值之间的关系。结果表明:铸态AZ61镁合金在热变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且峰值应力降低,再结晶晶粒尺寸随温度升高而增大;随应变速率上升,峰值应力增大且峰值应力对应的应变量增大,再结晶晶粒尺寸减小;硬度大小的变化也与动态再结晶密切相关。 Thermal compression tests of as-cast AZ61 magnesium alloy were performed at deformation temperature between 200 - 500℃ and strain rate between 0.001 - 1s^-1 . Microstructure and mechanical properties of the alloy were studied by means of metallography analysis and hardness test under different deformation conditions. The effects of temperature and strain rate on the mierostructure evolution of as-cast AZ61 magnesium alloy were analyzed by introducing temperature-compensated strain rate (Zener-Hollomon parameter). The function relation between dynamic recrystallization (DRX) grain size and the value of Z was built. The results show that DRX of AZ61 alloy occurs under compression deformation. DRX becomes easier, values of stress peak decrease and the DRX grain size grows up with the deformation temperature increasing.The values of stress peak and the critical strain increases and the DRX grain size gets smaller with the strain rate increasing. The change of values of hardness closely link to the DRX.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2009年第5期39-43,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(50571048)
关键词 AZ61镁合金 压缩变形 组织 再结晶 AZ61 magnesium alloy compression deformation microstructure dynamic recrystallization
  • 相关文献

参考文献5

二级参考文献35

  • 1张磊,赵生双,赵焕绥,钟维烈,张沛霖,王晓慧,冯景伟,陈大任.SAG法Ba_(1-x)Sr_xTiO_3的介电性质[J].山东大学学报(自然科学版),1996,31(1):110-114. 被引量:4
  • 2[1]Haertling, G. H. J. Am. Ceram. Soc.,1999,82(4):797
  • 3[2]Qi, J. Q. ;Gui, Z. L. ;Wu, Y. J.; Li, L. T. Sensor and Actuators A, 2001, 93:84
  • 4[3]Cheng, J. G.; Chu, J. H.; Zhang, A. J.; Tang, J. Appl. Phys.Lett., 2000, 77(7): 1035
  • 5[4]Jeon, J. H.; Hahn, Y. D.; Kim, H. D. J. Europ. Ceram. Soc.,2001, 21 (10-11): 1653
  • 6[5]Kirchoefer, S. W.; Cukauskas, E. J.; Barker, N. S.; Newman,H. S.; Chang, W. Appl. Phys. Lett.,2002, 80(7): 1255
  • 7[6]Yoo, J. H.; Gao, W. J. Mater. Sci., 1999, 34:5361
  • 8[7]Lee, E. H.; Sok, J.; Park, S. J.; Lee, J. S.; Song, I. H.; Kwak,J.; Jung, K.R.; Kim, J.Y.; Yoon, S.Y.; Jeon,D. Y. Superconductor Science & Technology, 1999, 12(11):981
  • 9[8]Chen, T. S.; Katakam, S.; Lee, J. H.; Lee, J. C. IEEE Transactions on Electron Devices, 1999, 46(12 ): 2304
  • 10[9]Cheng, J. G.; Zhang, A. J.; Meng, X.. J.; Chu, J. H.; Tang, J.Applied Physics A, 2000, 71 (6): 667

共引文献39

同被引文献78

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部