期刊文献+

基于改进的高斯混合模型脑MR图像分割 被引量:2

The brain MR image segmentation based on an improved Gaussian mixed mode
下载PDF
导出
摘要 MR图像中常含有偏移场以及噪声现象,传统的高斯混合模型无法得到正确的分类.在高斯混合模型目标函数中加入偏移场估计与噪声去除,完善其分类效果,使分类结果较好地克服偏移场和噪声影响.实验表明,该算法在得到较准确的分类结果的同时还能很好地估计偏移场. The conventional GMM mode can't get the precise classification results of magnetic resonance images, which are disturbed by bias field and noises. In order to overcome these limitations, bias field estimation and noise removal are incorporated in GMM mode in this paper. The new mode can reduce the effect of bias field and noise so as to get better classification results. Experiments on the segmentation of magnetic resonance images show that this mode has better effect in image segmentation and is able to have the bias field well estimated at the same time.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2009年第3期208-212,共5页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(60973157) 江苏省高校自然科学基金(08KJB520004)
关键词 高斯混合模型 偏移场 去噪 Gaussian mixed mode bias field noise removal
  • 相关文献

参考文献1

二级参考文献12

  • 1叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 2Tsai D M,Chen Y H.A fast histogram-clustering approach for multi-level thresholding [J].Pattern Recognition Letters,1992,13:245-252.
  • 3Cheng H D,Chen J R,Li J G.Thresholding selection based on fuzzy C-partition entropy arrpoach [J].Pattern Recognition,1998,31(7):857-870.
  • 4Pornphan DULYAKARN,Yuttapong RANGSASERI.Fuzzy C-Means Clustering Using Spatial Information with Application to Remote Sensing [A].22nd Asian Conference on Remote Sensing [C].Singapore,2001.11.
  • 5Y Zhang,M Brady,S Smith.Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [J].IEEE Trans.Medical Imaging,2001,20(1):45-57.
  • 6Stan Z Li.Markov Random Field Modeling in Image Analysis [M].Tokyo,Japan,Springer,2001,ISBN 4-431-70309-8.
  • 7Dzung L.Pham,Jerry L.Prince.Adaptive Fuzzy Segmentation of Magnetic Resonance Images [J].IEEE Trans.On Medical Imaging,1999,18(9):737-752.
  • 8丁震,胡钟山,杨静宇,唐振民,邬永革.一种适用于灰度图像分割的快速FCM算法[J].模式识别与人工智能,1997,10(2):133-139. 被引量:20
  • 9胡钟山,丁震,杨静宇,唐振民,邬永革.一种改进的 Fuzzy c-means 聚类算法[J].南京理工大学学报,1997,21(4):337-340. 被引量:4
  • 10薛景浩,章毓晋,林行刚.基于特征散度的图像FCM聚类分割[J].模式识别与人工智能,1998,11(4):462-467. 被引量:15

共引文献34

同被引文献20

  • 1何晓乾,陈雷霆,沈彬斌,房春兰.医学图像三维分割技术[J].计算机应用研究,2007,24(2):13-16. 被引量:16
  • 2Mallat S, Zhong S. Characterization of signal from nmltiscale edges [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(7) :710-732.
  • 3Mallat S. A theory for muhiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) :674-693.
  • 4Bergholm F. Edge focusing [C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9 (6) : 726-741.
  • 5Mallat S, Hwang W L. Singularity detection and processing with wavelets [ J ]. IEEE Transaction on Information Theory, 1992,38(2) :617-643.
  • 6Zhao H L, Qin G F, Wang X J. Improvement of canny algorithm based on pavement edge detection [C] //2010 3rd International Congress on Image and Signal Processing. 2010 : 964-967.
  • 7Zhu Q, Wang H X. Research on modulus maximum edge detection algorithm based on non-perfect reconstruction biorthogonal wavelet [C]//2010 3rd International Congress on Advanced Computer Theory and Engineering. 2010:501-504.
  • 8Yang X, Qi D W, Li X H. Multi-scale edge detection of wood defect images based on the dyadic wavelet transform [ C]//2010 International Conference on Machine Vision and Human-machine Interface. 2010 : 120-123.
  • 9Peng Bo, Zhang Lei, Yang Jian. Iterated Graph Cuts for Image Segmentation[ C ]//Computer Vision- ACCV. [ s. l. ] : [ s. n. ], 2009:677-686.
  • 10Rother C, Kolmogorov V, Blake A. "GrabCut" - Interactive Foreground Extraction using Iterated GraphCuts[ C ]//In ACM Transactions on Graphics, Special Issue: Proceeding of the 2004 SIGGRAPH Conference, 2004,23 ( 3 ) : 309-314.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部