摘要
ZiO2 was prepared by the hydrolyzation method in (NH4)2SO4-modified TiCl4 solution, and TiO2 photocatalysts were obtained by accelerating the precipitation of TiO2 powder in a high-temperature water bath. The photocatalysts were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectrum and UV-Vis (Ultraviolet-Visible) spectrometry techniques, and the photocatalytic activity in phenol-contaminated water was investigated. The results showed that photocatalysts calcined at 400 ℃ had a specific surface area of 138.2 m^2/g and an average particle size of 9 nm, and a significant increase in thermal stability of anatase phase. At the calcination temperature of 700 ~C, the crystal form of TiO2 started to change into rutile (anatase: 97%, rutile: 3%). The activity of TiO2 photocatalysts prepared with (NH4)2SO4-modified TIC14 solution was markedly stronger than that without (NH4)2SOg-modified TIC14 solution. Maximal photocatalytic activity was observed at the mole ratio of Ti:(NH4)2SO4= 1:2, the water-bath temperature of 90℃ and the calcination temperature of 700 ℃.
TiO2 was prepared by the hydrolyzation method in (NH4)2SO4-modified TiCl4 solution, and TiO2 photocatalysts were obtained by accelerating the precipitation of TiO2 powder in a high-temperature water bath. The photocatalysts were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectrum and UV-Vis (Ultraviolet-Visible) spectrometry techniques, and the photocatalytic activity in phenol-contaminated water was investigated. The results showed that photocatalysts calcined at 400 °C had a specific surface area of 138.2 m2/g and an average particle size of 9 nm, and a significant increase in thermal stability of anatase phase. At the calcination temperature of 700 °C, the crystal form of TiO2 started to change into rutile (anatase: 97%, rutile: 3%). The activity of TiO2 photocatalysts prepared with (NH4)2SO4-modified TiCl4 solution was markedly stronger than that without (NH4)2SO4-modified TiCl4 solution. Maximal photocatalytic activity was observed at the mole ratio of Ti:(NH4)2SO4=1:2, the water-bath temperature of 90 °C and the calcination temperature of 700 °C.