期刊文献+

一种基于页面兴趣度的关联规则研究

Study of Association Rules Based on Web Page Interesting
下载PDF
导出
摘要 给出了页面兴趣度的定义,并针对传统的Apriori关联规则算法必须经过大量反复扫描数据库才能产生候选项集的问题,提出了一种改进算法。此算法将数据库经过预处理后,对事务数据库进行分段,比较时可不针对所有事务记录,从而减少比较时间。最后将页面兴趣度应用于改进的Apriori算法中,形成一种基于页面兴趣度的关联规则算法——I_NEW_AR算法。实验结果表明,该算法不仅提高了挖掘效率,而且应用于网上推荐系统具有较好的准确率。 The authors give the definition of web interest. Aiming at the problem of typical association rules algorithm often requiries a large number of repeated passes over the database to generate the candidate item sets, we present an improved method. After preprocessing the database, we use the subsection technology to separate the database. Thus, the large item sets are generated by contrasts with the partial classified transaction records. This requires less contrast. Finally, we use the web interest to the improved Apriori algorithm. Thus, a new method of association rules based on web page interesting is formed. Experiment shows that this method not only provides efficiency of typical association rules algorithm, but also provides a better precision in recommended system.
出处 《浙江理工大学学报(自然科学版)》 2009年第6期886-890,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 页面兴趣度 WEB数据挖掘 关联规则 web page interest web data mining association rules
  • 相关文献

参考文献5

  • 1Badrul M, Karypis G. Analysis of Recommendation Algorithms for E-commerce[C]//ACM Conference on Electronic Commerce. New York: ACM Press, 2000: 135-167.
  • 2Seo Y, Zhang B. Learning user's preferences by analyzing Web-browsing behaviors[J]. Artificial Intelligence, 2001, 15 (6) : 381-387.
  • 3付关友,朱征宇.个性化服务中基于行为分析的用户兴趣建模[J].计算机工程与科学,2005,27(12):76-78. 被引量:27
  • 4Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]//Proceeding of the 1993 ACMS GMOD International conference on Management of Data. New York: ACM Press, 1993:207-216.
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules[C]//Proeeeding of the 1994 International Conference on Very Large Databases. Santiago Chile: Morgan Kaufmann Press, 1994: 487-499.

二级参考文献8

  • 1M Claypool, P Le, M Waseda, et al. Implicit Interest Indicators[A]. Proc of the ACM Intelligent User Interfaces Conf(IUI)[C]. 2001.33-40.
  • 2B Mobasher, H Dai, T Luo, et al. Combiing Web Usage and Content Mining for More Effective Personalization[A]. Proc of the Int'l Conf on E_ Commerce and Web Technologies(ECWeb2000)[C]. 2000.
  • 3T P Liang, H J Lai. Discovering User Interests from Web Browsing Behavior: An Application to Internet News Services[A]. Proc of the 35th Hawaii Int'l Conf on System Sciences[C]. 2002.
  • 4Wu Y H, Chen Y C, Chen L P. Enabling Personalized Recommendation on the Web Based User Interests and Behaviors[A]. Proc of the 11th Intq Workshop on Research Issues in ata Engineering (RIDE'01)[C]. 2001.
  • 5赵静 但琦.数学建模与数学试验[M].北京:高等教育出版社,2000..
  • 6李勇,徐振宁,张维明.Internet个性化信息服务研究综述[J].计算机工程与应用,2002,38(19):183-188. 被引量:47
  • 7曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 8谭琼,李晓黎,史忠植.一种实现搜索引擎个性化服务的方法[J].计算机科学,2002,29(1):23-25. 被引量:33

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部