期刊文献+

基于最小化星座点离散度的MPSK定时盲同步 被引量:2

Timing blind recovery for MPSK based on minimum constellation dispersion
下载PDF
导出
摘要 针对突发通信中定时同步问题,提出了一种基于最小化星座点离散度(MCD)的MPSK定时盲同步方法。该方法结合模式识别理论的概念,定义了MPSK的星座点离散度作为代价函数,并设计了基于该代价函数的近似线性的定时偏差分量提取函数(TED)。最后采用插值技术,通过迭代MCD来达到定时同步。该方法不需要训练序列,不受固定载波相位偏移的影响,仿真表明该方法可使MPSK快速达到定时同步状态。 A new multiple phase shift keying (MPSK) timing blind recovery method based on minimum constellation dispersion (MCD) is presented to solve the timing synchronization problem in burst communications. By associating with the pattern recognition theory, the constellation dispersion of MPSK is defined as the cost function and a new approximately linear time error detector (TED) function based on this cost function is proposed. The timing synchronization is achieved by iter- ating MCD and the interpolating technology without the aid of training sequences. The results from the simulation show that the method can quickly achieve timing synchronization in MPSK demodulation and avoid the effect of carrier phase offset.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第11期1106-1110,共5页 Chinese High Technology Letters
基金 863计划(2006AA01Z268)资助项目
关键词 MPSK解调 定时同步 插值 星座点离散度 MPSK demodulation, timing recovery, interpolation, constellation dispersion
  • 相关文献

参考文献9

  • 1JohnGP著.张力军,张宗橙,郑宝玉等译.数字通信.第四版.北京:电子工业出版社,2003.260-262.
  • 2Gardner F. A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans Commun, 1986, 34:423-429.
  • 3Mueller K, Mueller M. Timing recovery for digital synchronous data receivers. 1EEE Trans Commun, 1976, 24(5): 516-531.
  • 4Oerder M, Meyr H. Derivation of Gardner' s timing error detector from the maximum likelihood principle. IEEE Trans Commun, 1987, 35:684-685.
  • 5Gardner F M. Interpolation in digital modems-part I: fundamentals. IEEE Trans Commun, 1993, 41 : 501-507.
  • 6Erup L, Gardner F M, Harris R A. Interpolation in digital modems-part II: implementation and performance. IEEE Tram Commun, 1993, 41:998-1008.
  • 7Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd edition. New York: Wiley-Interscience, 2000. 542-543.
  • 8Boor C D. A Practical Guide to Splines. New York: Springer- Verlag, 2001.34-38.
  • 9Andrea A D, Mengal U, Reggianniui R. The modified Cramer- Rao bound and its application to synchronization problems. IEEE Trans Commun, 1994, 42(2/3/4) : 1391-1399.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部