期刊文献+

异形夹杂角端部局部奇异场杂交有限元分析 被引量:1

A Hybrid Finite Element Analysis of Singular Stress Fields around an Irregular Inclusion Corner
下载PDF
导出
摘要 首先利用一维有限元特征分析方法计算所得到的异形夹杂角端部应力奇异指数和奇异应力场、位移场角分布函数,并依据Hellinger-Reissner原理,开发出一个特殊的、能够反映夹杂角端部局部弹性现象的n边形超级角端部单元,然后将该超级单元与标准的4节点杂交应力单元耦合在一起构建了一种分析异形夹杂角端部奇异弹性场的新型特殊杂交应力有限元方法。文中给出了两个应用算例,算例结果表明:该文方法不仅使用单元少、计算结果精度高,而且适用范围广,可拓展应用于分析复合材料微结构组织与力学行为关系。 Firstly, a super n-sided polygonal element is developed to simulate local eleastic behavior around an inclusion corner by a one-dimensional finite element method-based eigenanalysis and Hellinger-Reisnner principle. The super element is then incorporated with standard four-node hybrid-stress elements to constitute a hybrid-stress finite element method for the analysis of local singular stress fields arising from inclusion corners. Two numerical examples are finally given, which indicates that the method has good calculating accuracy and wide-range application in analyzing compound materials and relationship of mechanical behavior.
出处 《华东交通大学学报》 2009年第5期1-6,共6页 Journal of East China Jiaotong University
基金 江西省自然科学基金项目(2007GZW0862) 载运工具与装备省部共建教育部重点实验室开放基金
关键词 夹杂角端部 应力奇异性 广义应力强度因子 杂交应力有限元 inclusion comer singular elastic field stress intensity coefficient hybrid finite element method
  • 相关文献

参考文献12

  • 1Chen DH. Analysis of singular stress field around the inclusion comer tip[J]. Engineering Fracture Mechanics, 1994,49(4) :533 - 546.
  • 2Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems[ J]. Proceeding of the Royal Society of London, 1957, A241 (1226) : 376 - 396.
  • 3刘一华,许金泉,丁皓江.纤维端部的界面裂纹分析[J].力学学报,1999,31(3):285-291. 被引量:10
  • 4Dong CY, 1_o SH, Cheung YK. Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium[J]. Computer Methods in Applied Mechanics and Engineering, 2003,192(5- 6):683- 696.
  • 5Chen MC, Sze KY. A novel hybrid finite element analysis of bimaterial wedge problems[ J]. Engineering Fracture Mechanics,2001,65 (13):1 463- 1 476.
  • 6Pian THH. Derivation of element stiffness matrices by assumed stress distributions[J]. The American Enstitute of Aeronantics and Astronautics Journal, 1964,2(7) : 1 333 - 1 336.
  • 7Tong P, Pian THH, Lasry SJ. A hybrid-element approach to crack problems in plane elasticity [ J ]. International Journal for Numerical Methods in Engineering, 1973,7(3) :297 - 308.
  • 8平学成,陈梦成,谢基龙,李强.基于新型裂尖杂交元的压电材料断裂力学研究[J].力学学报,2006,38(3):407-413. 被引量:9
  • 9Chen MC, Ping XC. A novel hybrid finite element analysis of inplane singular elastic field around inclusion comers in elastic media[J]. International Journal of Solids and Structures,2009,46(15):2 527- 2 538.
  • 10Xu JQ, Liu YH, Wang XG. Numerical methods for the determination of multiple stress singularities and related stress intensity coefficients[J]. Engineering Fracture Mechanics, 1999,63(6) :775 - 790.

二级参考文献26

共引文献16

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部