期刊文献+

π-twisted smash余积与π-L-Rsmash余积 被引量:1

On π-twisted smash coproducts and π-L-R smash coproducts
下载PDF
导出
摘要 摘要:设C是π-H余模余代数.给出了π-smash余积C×H,π-twisted smash余积C*H和π-L-Rsmash余积C#H的结构,并证明它们为π-余代数.当C是π-H余模Hopf代数时,π-smash余积C×H构成一个Hopfπ-余代数;当H是有限型Hopfπ-余代数,且对任意的α∈π,Hα是交换代数时,π-twisted smash余积与π-L-Rsmash余积之间存在π-余代数同构. The notions of π-smash coproducts,π-twisted smash coproducts and π-L-R smash coproducts were introduced.It was proved that they were all π-coalgebras,and a necessary condition for π-smash coproducts to be a Hopf π-coalgebra was given.For any finite type Hopf π-coalgebras,it was proved that there existed a π-coalgebra isomorphism between π-twisted smash coproducts and π-L-R smash coproducts if each Hα was commutative.
作者 陈刊 李金其
出处 《浙江师范大学学报(自然科学版)》 CAS 2009年第4期385-391,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10971188)
关键词 Π-余代数 πs-mash余积 πt-wistedsmash余积 π-L-Rsmash余积 π-coalgebras π-smash coproducts π-twisted smash coproducts π-L-R smash coproducts
  • 相关文献

参考文献5

  • 1Virelizier A. Hopf group-coalgebras [J].Pure Appl Alg,2002,171 ( 1 ) : 75 - 122.
  • 2Wang Shuanhong. Group twisted smash products and Doi-Hopf modules for T-coalgebras [ J ]. Comm Alg,2004,32 (9) :3417-3436.
  • 3Wang Shuanhong, Li Jinqi. On twisted smash product for bimodule algebras and the Drinfel'd double [ J ]. Comm Alg, 1998,26 (8) :2435-3444.
  • 4ZHANG Liangyun.L-R smash products for bimodule algebras[J].Progress in Natural Science:Materials International,2006,16(6):580-587. 被引量:20
  • 5Sweedle M E. Hopf algebra[ M ]. New York : Benjamin, 1969.

二级参考文献12

  • 1[1]Bonneau P.,Gerstenhaber M.,Giaquinto A.et al.Quantum groups and deformation quantization:Explicit approaches and implicit aspects.J.Math.Phy.,2004,45:3703-3741.
  • 2[2]Bonneau P.and Sternheimer D.Topological Hopf algebras,quantum groups and deformation quantization.Lecture Notes in Pure and Appl.Math.,2005,239:55-70.
  • 3[3]PanaiteF.and Oystaeyen F.V.L-R smash product for (quasi)Hopf algebras.http://xxx.sf.nchc.gov.tw/abs/math.QA /0504386[2005-01-17].
  • 4[4]Zhang L.Y.Long bialgebras,dimodule algebras and quantum Yang-Baxter modules over Long bialgebras.Acta Mathematica Sinica,English Series,published online Mar.14,2006,Http://www.ActaMath.com.
  • 5[5]Panaite F.and Oystaeyen F.V.Some bialgebroids constructed by Kadison and Connes-Moscovoci are isomorphic.http://xxx.sf.nchc.gov.tw/abs/math.QA/0508638[2005-08-31].
  • 6[6]Wang S.H.and Li J.Q.On twisted smash product for bimodule algebras and the Drinfel'd double.Comm.Algebra,1998,26(8):2435-2444.
  • 7[7]Molnar R.K.Semi-direct products of Hopf algebras.J.Algebra,1977,47:29-51.
  • 8[8]Montgomery S.Hopf algebras and their actions on rings.CBMS,Lect.Notes,1993.
  • 9[9]Militaru G.A class of non-symmetric solutions for the integrability condition of the Knizhnik-Zamolodchikov equation:a Hopf algebra approach.Comm.Algebra,1999,27(5):2393-2407.
  • 10[10]Bahturin Y.,Fischman D.and Montgomery S.Bicharacters,twistings,and Scheunert's theorem for Hopf algebras.J.Algebra,2001,236:246-276.

共引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部