期刊文献+

应用动态泛回归神经网络的在线负荷预测 被引量:1

Load On-line Prediction based on Dynamic GRNN Neural Network
下载PDF
导出
摘要 电力系统负荷变化受多方面因素的影响,因此负荷曲线呈现出强烈的非线性。为实现非线性的电力负荷在线预测,应用递推更新的样本数据集训练泛回归神经网络,构成动态泛回归神经网络。该动态神经网络训练方便快捷,能够满足在线预测的实时性的要求。仿真表明预测值较观测值有一定滞后,但均能尾随观测值而变化,达到了预期的目的。 There are various facts for the change of power system load. The load curve indicates strong nonlinearities. This paper proposes a method of on-line prediction of power system load,therefore ,general regression neural network (GRNN) is modified to meet the requirements as above. It is trained by using the recursively updated sample dale sets and thus GRNN became dynamic neural network. Training the dynamic neural network is convenient and fast, and so it can be applied to on-line prediction. The results of simulation experiments show that there is a little lag between the prediction profile and real profile, but the former vary with the latter. The expected aim is reached.
作者 刘耀年 李聪
出处 《东北电力大学学报》 2009年第4期39-44,共6页 Journal of Northeast Electric Power University
关键词 非线性 在线预测 动态神经网络 负荷预测 nonlinearity on-line prediction dynamic neural network load prediction
  • 相关文献

参考文献7

二级参考文献30

  • 1杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 2王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 3WALCZAK B, MASSART D L. The radial basis function-partial least squares approach as a flexible non-linear regression technique [J]. Analytica Chimica Acta, 1996, 331(3): 177-185.
  • 4SPECHT D F. A general regression neural network [J]. IEEE Trans Neural Networks, 1991, 2(6): 568-576.
  • 5YOUNES C, SURANJAN P, LEONARD F. A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease [J]. Chemometrics and Intelligent Laboratory System, 1999, 48: 47-58.
  • 6OSMAK S, GOSAK D, GLASNOVIC A. Dynamic mathematical model of deep bed filtration Process [J]. Computer & Chemical Engineering, 1997, 21:S763-S768
  • 7DIRK T, ANDREAS S. A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust 'black box'-tool for data analysis [J]. Neural Network, 2001, 14: 1023-1034.
  • 8[3]查特菲尔德(Chatterfield).时间序列分析导论[M].北京:宇航出版社,1986.
  • 9[8]A Smola and B.Scholkopf.A tutorial on support vector regression[M].NeuroCOLT Tech.Tech Rep TR 1998-030.Royal Holloway College.London,UK,1998.
  • 10Specht D F. A general regression neural network. IEEE Transactions on Neural Networks, 1991,2(6) :568~576.

共引文献184

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部