期刊文献+

基于粒子群优化的移动机器人SLAM方法 被引量:18

Mobile Robot SLAM Method Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对移动机器人的粒子滤波SLAM(同时定位与建图)方法中需要大量粒子来提高精度的问题,将粒子群优化思想引入到FastSLAM中,提出了一种基于粒子群优化的同时定位与建图方法.通过粒子群优化方法对FastSLAM中预估粒子进行更新,调整粒子的提议分布,使得预测采样粒子集中于机器人的真实位姿附近.该方法能有效提高SALM精度,并减少所使用的粒子数以及计算的时间复杂度.仿真实验结果表明该方法有效、可行. A large number of particles are needed to improve the precision in particle filtering SLAM (simultaneous localization and mapping) of mobile robots. To solve this problem, a SLAM method based on particle swarm optimization (PSO) is presented by introducing PSO's idea into the FastSLAM. Through the particle swarm optimization, the particle's prediction is updated, the particle's proposal distribution is adjusted in FastSLAM, and then the particles are concentrated around the robot's true pose. The method can enhance the SLAM precision effectively, and reduce the particle number and the computational time complexity. The simulation experiment results prove its effectiveness and feasibility.
出处 《机器人》 EI CSCD 北大核心 2009年第6期513-517,共5页 Robot
基金 国家自然科学基金重点资助项目(90820302) 国家自然科学基金青年基金资助项目(60805027)
关键词 SLAM 移动机器人 粒子滤波器 粒子群优化 simultaneous localization and mapping (SLAM) mobile robot particle filter particle swarm optimization
  • 相关文献

参考文献8

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2Yin B, Wei Z Q, Zhuang X D. Robust mobile robot localization using an evolutionary particle filter[M]//Lecture Notes in Computer Science (vol.3801). Berlin, Germany: Springer-Verlag, 2005: 279-284.
  • 3Moreno L, Munoz M L, Garrido S, et al. Evolutionary filter for mobile robot global localization[C]//IEEE International Symposium on Intelligent Signal Processing. Piscataway, NJ, USA: IEEE, 2007: 891-896.
  • 4Chatterjee A, Matsuno E Improving EKF-based solutions for SLAM problems in mobile robots employing neuro-fuzzy supervision[C]//IEEE International Conference on Intelligent Systems. Piscataway, NJ, USA: IEEE, 2006: 683-689.
  • 5李枚毅.结合免疫机制的并发定位与建图多目标进化算法[J].湘潭大学自然科学学报,2007,29(2):111-117. 被引量:3
  • 6Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences[M]// Lecture Notes in Computer Science (vol.1447). Berlin, Germany: Springer-Verlag, 1998: 601-610.
  • 8Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using FastSLAM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 1985-1991.

二级参考文献32

  • 1Willdor R, Wenzel L. Giving a Compass to a Robot - Probabilistic Techniques for Simultaneous Localization and Map Building (SLAM)in Mobile Robotics[ R]. Berkeley: University of California, 2002.
  • 2Thrun S, Koller D, et al. Simultaneous Mapping and Localization With Sparse Extended Information Filters: Theory and Initial Results[ R]. USA: Carnegie Mellon University, 2002.
  • 3Di Marco M, Garulli S, Lacroix S, et al. A set theoretic approach to the simultaneous localization and map building problem [ A ]. Proceedings of the 39th IEEE Conference on Decision and Control [ C ].Sidney: 2000. 833-838.
  • 4Baley T, Nebot E M, Rosenblatt J K, et al. Data association for mobile robot navigation: A graph theoretic approach[ A]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ].San Francisco: 2000. 2512 -2517.
  • 5Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem [ A ]. Proceedings of the Eighteenth National Conference on Artificial Intelligence [ C ]. Edmonton: AAAI Press,2002:593 -598.
  • 6Cox I, Wilfong G. Autonomous Robot Vehicle[ M]. London: Springer-Verlag, 1990. 167 - 193.
  • 7Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using fastSLAM [ A ]. Proceedings of the IEEE International Conference on Robotics and Automation [ C ].Taiper: 2003. 1985 - 1991.
  • 8Guivant J, Nebot E, Durrant-Whyte H. Simultaneous localization and map building usingnatural features in outdoor environments[ A]. 6th International Conference on Intelligent Autonomous Systems[ C]. Italy: 2000. 581 -588.
  • 9Guivant J, Nebot E. Optimization of simultaneous localization and map building algorithm for real time implementation[ J]. IEEE Transactions on Robotics and Automation, 2001,17(3): 242 -257.
  • 10Guivant J, Nebot E. Improved computational and memory requirements of simultaneous localization and map building algorithms [ A ].Proceedings of the 2002 IEEE International Conference on Robotics & Automation [G]. Washington, DC: 2002. 2731 -2736 .

共引文献46

同被引文献141

引证文献18

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部