期刊文献+

正弦驱动与传感反馈结合的双足机器人仿生行走控制 被引量:3

A Bionic Walking Control for Biped Robot Using Sinusoidal Input and Sensory Feedback
下载PDF
导出
摘要 提出了一种正弦驱动与传感反馈结合的双足机器人仿生行走控制方法.所有关节由正弦振荡器驱动,较之相互耦合的神经元振荡器更加简单;控制参数具有明晰的物理意义,便于对运动模式进行调节.传感反馈表征了机器人的运动状态,对于保证机器人的稳定行走起着至关重要的作用.将机器人碰地、碰膝等关键运动状态作为相位反馈,对控制力矩进行相位重置,协调各关节动作,进而实现控制器、机器人、环境的耦合.同时,从节省能量和仿生的角度,考虑了关节运动的被动特性,确定了各关节力矩的作用区间.仿真结果表明,该控制方法能实现机器人稳定行走,并具有良好的能效性和自稳定性. A bionic walking control strategy for biped robot using sinusoidal input and sensory feedback is proposed. All joints are actuated by sinusoidal oscillator, which is simpler than coupled neural oscillators. Control parameters have clear physical meaning, and it is convenient to adjust walking pattern. Locomotion states of robot are characterized by sensory feedbacks, which play an important role in ensuring stable walking. Some key locomotion states, such as ground impact and knee impact, are used as phase feedback to reset joint torques and coordinate movement of different joints. The coupling among controller, robot, and environment is then realized. The actuating areas of torques are determined considering passive characteristic of joints from the perspectives of saving energy and imitating human beings. The simulation results show that stable walking with favorable energy efficiency and self-stability is obtained using this control strategy.
出处 《机器人》 EI CSCD 北大核心 2009年第6期599-604,共6页 Robot
基金 国家自然科学基金资助项目(50575119 50805082) 国家863计划资助项目(2006AA04Z253) 清华大学摩擦学国家重点实验室自主研究课题(SKLT08B09)
关键词 双足机器人 正弦振荡器 传感反馈 相位重置 节能 biped robot sinusoidal oscillator sensory feedback phase reset energy saving
  • 相关文献

参考文献14

  • 1Geng T, Port B, WOrgotter E Fast biped walking with a sensordriven neuronal controller and real-time online learning[J]. International Journal of Robotics Research, 2006, 25(3): 243-259.
  • 2Taga G. A model of the neuro-musculo-skeletal system for human locomotion Ⅰ: Emergence of basic gait[J]. Biological Cybernetics, 1995, 73(2): 97-111.
  • 3Lewis M A, Tenore F, Etienne-Cummings R. CPG design using inhibitory networks[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005: 3682-3687.
  • 4Sadati N, Hamed K. CPG based controller for a 5-1ink planar biped robot[C]//IEEE International Conference on Mechatronics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 5Aoi S, Tsuchiya K. Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback[J]. IEEE Transactions on Robotics, 2006, 22(2): 391-397.
  • 6付成龙,黄元林,王健美,陈恳.半被动双足机器人的准开环控制[J].机器人,2009,31(2):110-117. 被引量:19
  • 7Yang W, Chong N Y, Kim C H. Self-adapting humanoid locomotion using a neural oscillator network[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 309-316.
  • 8Righetti L, Ijspeert A J. Programmable central pattern generators: An application to biped locomotion control[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 1585-1590.
  • 9McGeer T. Passive dynamic walking[J]. International Journal of Robotics Research, 1990, 9(2): 62-82.
  • 10Basmajian J V. The human bicycle: An ultimate biological convenience[J]. The Orthopedic Clinics of North America, 1976, 7(4): 1027-1029.

二级参考文献9

  • 1付成龙,陈恳.五杆四驱动平面双足机器人动态步态规划与非线性控制[J].机器人,2006,28(2):206-212. 被引量:8
  • 2Hirai K, Hirose M, Haikawa Y, et al. Development of Honda humanoid robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1998. 1321-1326.
  • 3McGeer T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82.
  • 4Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307 (5712): 1082-1085.
  • 5Asano F, Yamakita M, Kamamichi N, et al. A novel gait generation for biped walking robots based on mechanical energy constraint[J]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 565-573.
  • 6Ono K, Takahashi R, Shimada T. Self-excited walking of a biped mechanism[J]. The International Journal of Robotics Research, 2001, 20(12): 953-966.
  • 7Goswami A, Espiau B, Keramane A. Limit cycles in a passive compass gait biped and passivity-mimicking control laws[J]. Autonomous Robots, 1997, 4(3): 273-286.
  • 8詹佩璇.神经生物学[M].台北:合记图书出版社,2004.121-141.
  • 9Basmajian J V. The human bicycle: An ultimate biological convenience[J]. Orthopedic Clinics of North America, 1976, 7(4): 1027-1029.

共引文献18

同被引文献32

  • 1梁建宏,邹丹,王松,王野.SPC-II机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713. 被引量:21
  • 2孙炜,王耀南.模糊CMAC及其在机器人轨迹跟踪控制中的应用[J].控制理论与应用,2006,23(1):38-42. 被引量:20
  • 3付成龙,陈恳.五杆四驱动平面双足机器人动态步态规划与非线性控制[J].机器人,2006,28(2):206-212. 被引量:8
  • 4魏航信,刘明治,赵丽琴.仿人机器人跑步运动的仿真[J].系统仿真学报,2007,19(2):396-399. 被引量:5
  • 5Honda Motor Co. Ltd. Smoother and more stable walk- ing[OL/EB]. [2011- 08-20]. http: // world, honda. com/ASIMO/technology/walking, html.
  • 6CHEVAI.LERAU C, ABBA G, AOUSTIN Y, et al. RABBIT: A testbed for advanced control theory[J]. IEEE Control Systems Magazine, 2003, 23(5): 57-79.
  • 7Boston Dynamics. PETMAN BigDog gets a big brother [OL/EB]. [2011-10-13]. http://www, bostondynam ics. com/robot_petman, html.
  • 8WESTERVELT E R, GRIZZLE J W, CHEVAI.I.ER- AU C, et aL Feedback control of dynamic bipedal robot locomotion [ M ]. Boca Raton: CRC Press, 2007: 144 - 156.
  • 9WESTERVELT E R, GRIZZI.E J W, CANUDAS D W C. Switching and PI control of walking motions of pla- nar biped walkers[J]. IEEE Transactions on Automatic Control, 2003, 48(2): 308-312.
  • 10SABOURIN C, MADANI K, BRUNEAU O. Autono mous biped gait pattern based on Fuzzy-CMAC neural networks[J]. Integrated Computer-Aided Engineering, 2007, 14(2): 173-186.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部