期刊文献+

基于匹配子波变换的呼吸罗音检测与分类 被引量:2

Crackle Detection and Classification Based on Matched Wavelet Transform
下载PDF
导出
摘要 提出一种基于匹配子波变换的罗音检测及分类方法。我们首先建立罗音信号的数学模型,然后基于这一模型设计子波变换的母函数。原始信号经过连续子波变换后,采用“软门限”进一步滤除噪声。根据每一尺度信号的能量,我们可以确定针对该信号的最佳尺度,从而可以检测罗音及对其进行分类。文中给出了实验方法及实验结果。 In this paper, we present a method for crackle detection which is based on ‘matched’ wavelet transform. We first modeled crackles as a mathematical function. Then we designed a matched mother wavelet based on this model. Applying a soft threshold to the results of the continuous wavelet transform to suppress noise further, we obtained the optimal scale Crackles were detected based on the envelope of the signal at optimal scale, and could be classified based on energy distribution with scale. The theory, methods and experimental results are given in detail.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 1998年第4期400-405,共6页 Journal of Biomedical Engineering
关键词 罗音 子波变换 检测 分类 呼吸 Lung sond Crackle Wavelet transform Detection Classification
  • 相关文献

参考文献1

  • 1杜明辉,第13届全国电路与系统学术会议论文集,1996年,152页

同被引文献14

  • 1刘毅,张彩明,赵玉华,董亮.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报,2006,29(5):769-777. 被引量:31
  • 2Gavriely N.Breath sounds methodology[M].Boca Raton:CRC Press,1995:18-22.
  • 3Dorantes G,Charleston S,Gonzalez R,et al.Crackles detection using a time-variant autoregressive model[C]//30th IEEE Engineering in Medicine and Biology Society Conference.Vancouver:IEEE Engineering in Medicine and Biology Society,2008:1894-1897.
  • 4Kaisla T,Sovijarvi A,Piirilla P,et al.Validation method for automatic detection of lung sound crackles[J].Medical & Biological Engineering & Computing,1991,29(5):517-521.
  • 5Ono M,Arakawa K,Mori M,et al.Separation of fine crackles from vesicular sounds by a nonlinear digital filter[J].IEEE Transactions on Biomedical Engineering,1989,36(2):286-288.
  • 6Kandaswamy A,Kumar C S,Ramanathan R P,et al.Neural classification of lung sounds using wavelet coefficients[J].Computers in Biology and Medicine,2004,34 (4):523-537.
  • 7Li Z Z,Du M H.HHT based lung sound crackle detection and classification[C]//International Symposium on Intelligent Signal Processing and Communications Systems.Hong Kong:The Chinese University of Hong Kong,2005:385-388.
  • 8Ran Tao,Li Xue-mei,Wang Yue.Generalization of the fractional Hilbert transform[J].IEEE Signal Processing Letters,2008,15:365-368.
  • 9Pei S C,Yeh M H.Discrete fractional Hilbert transform[J].IEEE Transactions on Circuits and Systems—Ⅱ:Analog and Digital Signal Processing,2000,47 (11):1307-1311.
  • 10Davis J A,McNamara D E,Cottrell D M,et al.Analysis of the fractional Hilbert transform[J].Applied Optics,1998,37(29):6911-6913.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部