期刊文献+

三维非稳态导热问题的高效稳定数值解法 被引量:3

High Efficient and Stable Numerical Method for Three-dimensional Unsteady Heat Conduction Problems
下载PDF
导出
摘要 为了克服传统显格式和ADI方法受稳定性条件限制的弊端及传统迭代法在求解隐格式时计算量大、收敛速度慢的缺陷,采用古典的Crank-Nicolson格式和多重网格法方法,对三维非稳态导热问题进行了高效稳定求解.得到了三维非稳态导热问题的数值解.利用数值实验结果验证了该方法的可靠性. In order to overcome stability limit of classical explicit difference schemes and ADI method and difficulties in a large quantity of calculations when traditional relaxation methods are used to treat the implicit difference schemes, the Crank-Nicolson difference scheme and multigrid method are employed to solve three-dimensional unsteady heat conduction problems. The numerical solution of three-dimensional unsteady heat conduction problems is obtained in this paper. Numerical experiments show the dependability of present method."
作者 王怀柱
出处 《河北北方学院学报(自然科学版)》 2009年第5期1-4,共4页 Journal of Hebei North University:Natural Science Edition
基金 宁夏高等学科科学技术研究项目(2008-04)
关键词 三维导热问题 非稳态 隐式差分格式 多重网格方法 three-dimensional heat conduction problems unsteady implicit difference scheme multigrid method
  • 相关文献

参考文献7

  • 1Peaceman DW, Rachford HH. The numerical solution of parabolic and elliptic differential equations [J]. Soc Indust ApplMath, 1955, 3:28-41.
  • 2Brand TA. Multi-level adaptive solution to boundary-value problems [J]. Math Comput, 1977, 31: 333-390.
  • 3Gupta MM. Comparison of second-and fourth-order discretizations for multigrid poisson solvers [ J]. Comput Phys, 1997, 132:226-232.
  • 4Zhang J. Fast and high accuracy multigrid solution of the three-dimensional poisson equation [J]. Comput Phys, 1997, 143:449-461.
  • 5葛永斌,吴文权,卢曦.解二维扩散方程的高精度多重网格方法[J].工程热物理学报,2002,23(S1):121-124. 被引量:6
  • 6Thibault J. A three-dimensional numerical method based on the superposition principle [J]. Numer Heat Transfer. 1984, 7:127-145.
  • 7Wesseling PW. An introduction to multigrid methods[M]. Chichester: Wiley, 1992:1-86.

二级参考文献1

  • 1陆金甫关治偏微分方程数值解法[M].

共引文献5

同被引文献39

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部