期刊文献+

整环上矩阵的加权广义逆 被引量:4

Weighted Generalized Inverses of Matrices over Integral Domains
下载PDF
导出
摘要 研究了整环上矩阵的加权Moore-Penrose逆及其存在的充要条件.应用D.W.Robinson在(Linear Algebra Appl.,2005,411:254-276.)中的引理给出整环上的加权Moore-Penrose逆的表达式. In this article, weighted generalized Moore-Penrose inverses of Matrices over integral domains is defined and studied. Necessary and sufficient conditions for this kind of inverse to exist are given. By using a lemma of D. W. Robinson( Linear Algebra Appl. ,2005,411:254-276) an expression of the generalized inverse is also given.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期734-737,共4页 Journal of Sichuan Normal University(Natural Science)
基金 广西科学基金(0640016) 广西研究生教育创新计划基金(2007106080701M19) 安徽省高等学校优秀青年人才基金(2009SQRZ163ZD)资助项目
关键词 整环 子式 加权Moore—Penrose逆 Integral domain Subdeterminants Weighted Moore-Penrose inverse
  • 相关文献

参考文献13

  • 1Yu Y, Wei Y. Determinantal representation of the generalized inverse AT,S^(2) over integral domains and its applications[ J]. Linear and Multilinear Algebra,2009,57 (6) :547-559.
  • 2Liu X, Yu Y, Wang H. Determinantal representation of weighted generalized inverses [ J ]. Applied Mathematics and Computation,2009,208 (2):556-563.
  • 3王宏兴,刘晓冀.分块态射的广义逆[J].曲阜师范大学学报(自然科学版),2007,33(2):44-46. 被引量:1
  • 4王兴国.(p,r)-不变凸性下广义分式规划的最优性条件[J].四川师范大学学报(自然科学版),2005,28(1):66-69. 被引量:12
  • 5谢仲洲,刘晓冀.一类四元数体上线性矩阵方程组的解[J].四川师范大学学报(自然科学版),2009,32(4):439-442. 被引量:2
  • 6Bhaskara Rao K P S. Generalized inverse of matrices over integral domains[ J]. Linear Algebra Appl, 1983,49( 1 ) :179-189.
  • 7Robinson D W. The classical adjoint[ J]. Linear Algebra Appl,2005,411 (1) :254-276.
  • 8Stanimirovic P, Stankovic M. Determinantal representation of weighted Moore-Penrose inverse [ J ]. Matematicki Vesnik, 1994, 46( 1 ) :41-50.
  • 9Cai J, Chen G L. On determinantal representation for the generalized inverse and its applications [ J ]. Numer Linear Algebra Appl,2007,14(2) :169-182.
  • 10Yu Y M, Wang G R. The generalized inverse AT,S^(2) over commutative rings [ J]. Linear and Multilinear Algebra,2005,53 (4) : 293 -302.

二级参考文献22

  • 1高福顺,张静,韩燕.α-连对角占优矩阵及应用[J].东北师大学报(自然科学版),2004,36(4):33-37. 被引量:5
  • 2刘晓冀,王志坚,刘三阳.四元数矩阵的加权广义逆[J].数学的实践与认识,2004,34(10):128-131. 被引量:3
  • 3QingWenWANG.A System of Four Matrix Equations over von Neumann Regular Rings and Its Applications[J].Acta Mathematica Sinica,English Series,2005,21(2):323-334. 被引量:9
  • 4Liu J C, Wu C S. On minimax fractional optimality conditions with invexity[J]. J Math Anal Appl, 1998,219:21 ~ 35.
  • 5Liu J C, Wu C S. On minimax optimality conditions with (F,ρ)-convexity[J]. J Math Anal Appl, 1998,219:36~51.
  • 6Xu Z K. Mixed type duality in multiobjective programming problems[ J]. J Math Anal Appl, 1996,198:621 ~ 635.
  • 7Antczak T. (p,r)-invex sets and functions[J]. J Math Anal Appl,2001,263:355 ~ 379.
  • 8Antczak T. On (p, r)-invexity-types nonlinear programming problems[J]. J Math Anal Appl,2001,264:382 ~ 397.
  • 9Chandra S, Kumar V. Duality in fractional minimax programming[J]. J Austral Math Soc Ser A, 1995,58:376 ~ 386.
  • 10Hanson M A. On sufficiency of the Kuhn-Tuck conditions[J]. J Math Anal Appl, 1981,80:545 ~ 550.

共引文献14

同被引文献37

  • 1张希花,陈艳妮,郑艳萍,杜鸿科.Drazin可逆算子在0点特征投影的刻画[J].陕西师范大学学报(自然科学版),2006,34(4):21-24. 被引量:2
  • 2岑建苗.关于长方矩阵的加权群逆的存在性[J].计算数学,2007,29(1):39-48. 被引量:15
  • 3BAKSALARY O M,TRENKLER G. Core inverse of matriees[J]. Linear and Multilinear Algebra,2010,58(6):681- 697.
  • 4KOLIHA J J,STRASKRABA I. Power bounded and exponentially bounded matrices[J]. Applications of Mathematics, 1999,44 (4) .289-308.
  • 5CASTRO-GONZALEZ N,KOLIHA J J,WEI Yi-min. Perturbation of the Drazin inverse for matrices with equal eigen-projections at zero[J]. Linear Algebra and its Applications,2000,312(1/3) :181-189.
  • 6MARSAGLIA G,STYAN G P H. Equalities and inequalities for ranks of matrices[J]. Linear and Muhilinear Algebra, 1974,2 (3) : 269-292.
  • 7WEI Yi-min. A characterization and representation of the generalized inverseAT.S^(2) and its applications[J]. Linear Algebra and Its Applications, 1998,280 (2/3) : 87-96.
  • 8JOSHI V N. Remarks on iterative methods for computing the generalized inverse[J]. Studia Sei Math Hungar, 1973, 8:457-461.
  • 9DU Hong-ke,DENG Chun-yuan. The representation and characterization of Drazin inverse of operators on a Hilbert space[J]. Linear Algebra and its Applications, 2005,407 : 117-124.
  • 10WEI Yi-min,QIAO San-zheng. The representation and approximation of the Drazin inverse of a linear operator in Hilbert space [J]. Applied Math Comput, 2003,138 ( 1 ) : 77-89.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部