期刊文献+

尺度与特征引导视觉选择性注意机制模型 被引量:2

Model of Visual Selective Attention Mechanism Deployed by Scale and Features
下载PDF
导出
摘要 针对在传统机器视觉研究中,尺度、显著性和物体识别多数被分开研究的现状,首先分析三者之间的内在联系和相互关系,得出应该在一个框架中来研究它们的结论;然后讨论视觉中的尺度空间表示方法、显著性度量方法。最后选取强度、颜色和方向三种特征以及尺度引导注意,建立一个自下而上的结合尺度与特征引导的计算模型,并给出仿真实验结果。 In traditional study of machine vision,scale,saliency and object recognition are performed respectively.Contrary to the traditional idea,they are unified in which the problems of scale in vision and the scale-space representation,the essence of the computation of saliency are discussed.Intensity,color,orientation and scale are used to construct a bottom-up computational model deployed by scale and features.And emulation experiment results are given.
机构地区 上海电力学院
出处 《现代电子技术》 2009年第22期84-87,共4页 Modern Electronics Technique
基金 上海市重点学科建设项目资助项目(P1303) 上海高校选拔优青教师科研专项基金资助项目(Z-2009-03)
关键词 协同模式识别 主动视觉 视觉选择性注意机制 尺度空间 synergetic pattern recognition active vision visual selective attention mechanism scale-space
  • 相关文献

参考文献9

  • 1Navalpakkam V, Itti L. Modeling the Influence of Task on Attention[J]. Vision Research, 2005,45 (2) : 205 - 231.
  • 2Soto D,Blaneo M J. Spatial Attention and Object- based Attention:A Comparison within a Single Task[J]. Vision Re search, 2004,44 : 69 - 81.
  • 3Duits R,Florack L,Graaf J D,et al. On the Axioms of Scale Space Theory[J]. Journal of Mathematical Imaging and Vision, 2004,20: 267 - 298.
  • 4Duda R O. Pattern Classification[M]. 2nd Edition. Wiley-Interscience, 2000.
  • 5Lowe D G. Distinctive Image Features from Scale Invariant Keypoints[J]. International Journal of Computer Vision, 2004,2(60):91 - 110.
  • 6Mikolaj czyk K, Tuytelaars T, Schmid C, et al. A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision, 2004.
  • 7Florack L, Kuijper A. The Topological Structure of Scale- Space Images[J]. Journal of Mathematical Imaging and Vision, 2000,12 :65 - 79.
  • 8Kuijper A. Mutual Information Aspects of Scale Space Images[J]. Pattern Recognition, 2004,37(12) : 2 361 - 2 373.
  • 9Itti L,Koch C. Computational Modeling of Visual Attention [J]. Nature Neuroscience, 2001,2 : 194 - 203.

同被引文献23

  • 1Hajizadeh A, Farhadpour Z. An Algorithm for 3D Pore Space Reconstruction from a 2D Image Using Sequential Simulation and Gradual Deformation with the Probability Perturbation Sampler[J], Transport in Porous Media, 2012, 94 (3): 859-881.
  • 2Kumar T S, Vijai A. 3D Reconstruction of Face from 2D CT Scan Images [C]//International Conference on Communication Technology and System Design. Oxford: Elceiver Ltd, 2012: 970-977.
  • 3Ciechomski P D, Constantinescu M, Garcia J, et al. Development and Implementation of a Web-Enabled 3D Consultation Tool for Breast Augmentation Surgery Based on 3D-Image Reconstruction of 2D Pictures[J]. Journal of Medical Internet Research, 2012, 14(1): 21.
  • 4Pilu M. A Direct Method for Stereo Correspondence Based on Singular Value Decomposition C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 1997: 261-266.
  • 5Salah A A, Alpaydin E, Akarun L. A Selective Attention-based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Reeognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 420-425.
  • 6Itti L,Kouch C. Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,(03):194-230.
  • 7Itti L,Kouch C. Feature combination strategies for saliency-based visual attention systems[J].Journal of Electronic Imaging,2001,(01):161-169.doi:10.1117/1.1333677.
  • 8Aehanta R,Hemami S,Estrada F. Frequeney-tuned salient region deteetion[A].2009.1597-1604.
  • 9HU Yi-qun,XIE Xing,MA Wei-ying. Salient region detection using weighted feature maps based on the human visualattention model[A].Heidelberg:Springer-Verlag,2004.993-1000.
  • 10Weliky M,Kander K,Fitzpatrick D. Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns[J].Neuron,1995,(03):541-552.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部