期刊文献+

基于尺度乘积和相关性的图像去噪

Image Denoising Based on Multi-scale Product and Dependencies
下载PDF
导出
摘要 为了去除图像的噪声,提出了一种基于尺度乘积和尺度相关性的平稳小波变换图像去噪方法.在传统小波系数估计的基础上,考虑到尺度间的相关性,利用不同尺度小波系数形成的系数向量,通过线性最小均方误差估计小波系数,获得各个高频子带的估计系数.针对单纯利用尺度间相关性去噪造成的图像边缘失真问题,在不同尺度小波系数形成的系数向量中引入了小波系数乘积,不但可以较好区分边缘信息和噪声信息,而且提高了原有算法的去噪能力.仿真结果表明,该图像去噪算法能有效去除图像噪声,较好保持图像边缘,在峰值信噪比和视觉质量上都有较大提高. In order to filter the noise in image, a method based on multi-scale product and dependencies using stationary wavelet transform for denoising is proposed. At the base of traditional coefficients estimation, the image is decomposited using stationary wavelet transform. And the dependencies of wavelet coefficients is considered. The wavelet coeffieients are estimated by the minimum mean square-error estimation using the wavelet coefficient vectors are formed with the different scales. Due to the problem of edge distortion using multi-scales dependencies in image denoising, the multi-scale product is added to the wavelet coefficient vectors. Then the edge information and noisy infornation are separated weU. And the denoiseing performance is improved. The experimental results show that the noisy image can be denoised well by the proposed algorithm. The edge information is preservated well. And the PSNR as well as the visual quality are well.
作者 周隆明 张帆
出处 《微电子学与计算机》 CSCD 北大核心 2009年第12期51-55,共5页 Microelectronics & Computer
关键词 图像去噪 平稳小波变换 尺度相关性 尺度乘积 images denoising stationary wavelet transform multi-scale dependencies multi-scale product
  • 相关文献

参考文献11

二级参考文献31

  • 1刘杰平,余英林.基于小波变换的盲图象恢复[J].微电子学与计算机,2004,21(8):73-75. 被引量:4
  • 2王红梅,李言俊,张科.基于平稳小波变换的图像去噪方法[J].红外技术,2006,28(7):404-407. 被引量:13
  • 3李迎春,孙继平,付兴建.基于小波变换的红外图像去噪[J].激光与红外,2006,36(10):988-991. 被引量:33
  • 4侯建华,田金文,柳健.小波域局部维纳滤波器估计误差分析及图像去噪[J].光子学报,2007,36(1):188-191. 被引量:15
  • 5Donoho D L. De-noising via Soft-thresholding [J]. IEEE Transform. Information Theory, 1995, 41(3): 613~627.
  • 6Donoho D L, Johnstone I. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 1994, 81(3): 425~455.
  • 7Donoho D L. Nonlinear Wavelet Methods for Recovery of Signals, Desities and Spectra from Indirect and Noisy Data. Proceeding of Symp., 1993, 47: 173~205.
  • 8S Mallat. Theory for Multi-resolution Signal Decomposition: The Wavelet Representation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence. 1989, 11 (7):674~693.
  • 9Donoho D L. Denoising by soft-thresholding[J]. IEEE Trans on Information Theory, 1995,41(3):613-627.
  • 10Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3) : 425-455.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部