期刊文献+

基于Hausdorff距离的视觉监控轨迹分类算法 被引量:8

Trajectory lcassification based on Hausdorff distance for visual surveillance system
下载PDF
导出
摘要 针对智能视觉监控系统中的运动目标轨迹分类问题,提出了一种基于多维Hausdorff距离的轨迹聚类算法。该算法使用流矢量序列描述目标运动轨迹,由多维Hausdorff距离进行轨迹相似性测量,通过谱聚类实现轨迹分类。该算法在轨迹描述中同时包含位置和方向信息,解决了Hausdorff距离不能区分轨迹运动方向的问题。为降低计算复杂度,本文还提出一种保距变换对轨迹相似性测量进行优化。与相关算法的对比实验表明,提出的轨迹分类算法可达到更高的聚类准确率;提出的保距变换可以显著降低算法的计算复杂度。 A trajectory clustering algorithm based on multi-dimensional Hausdorff distance is proposed for classification of trajectories of moving objects in intelligent visual surveillance system.First,the trajectory of a moving object is described using a sequence of flow vectors.Then the similarity between trajectories is measured by their respective multi-dimensional Hausdorff distances.Finally,the trajectories are clustered by the spectral clustering algorithm.The proposed algorithm is different from other schemes using Hausdorff distance that it includes both the position and direction information in the flow vectors;hence it can distinguish the trajectories in different directions.A distance preserving transformation is also proposed to reduce the computational complexity of the similarity measure.Experimental results show that,comparing with other algorithm,the clustering accuracy of the proposed algorithm is better,and the proposed distance preserving transformation can greatly reduce the computational cost.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第6期1618-1624,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 "863"国家高技术研究发展计划项目(2003AA1Z2130) 浙江省重大科技攻关项目(2005C11001-02)
关键词 人工智能 轨迹分类 HAUSDORFF距离 谱聚类 保距变换 artificial intelligence trajectory classification Hausdorff distance spectral clustering distance preserving transformation
  • 相关文献

参考文献15

  • 1Hu Wei-ming, Tan Tie-niu, Wang Liang, et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C : Applications and Reviews, 2004,34 (3) : 334-352.
  • 2Valera M, Velastin S A. Intelligent distributed surveillance systems : A review[C]// Proceedings of the Vision, Image and Signal Processing,2005 : 192-204.
  • 3Fu Zhou-yu, Hu Wei-ming, Tan Tieniu. Similarity based vehicle trajectory clustering and anomaly de teetion[C]// Proceedings of the IEEE International Conference on Image Processing,2005:602-605.
  • 4Keogh E J, Pazzani M J. Scaling up dynamic time warping for data mining application[C]// Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, 2000:285-289.
  • 5Porikli F. Trajectory distance metric using Hidden Markov model based representation [C]//Proceed ings of the IEEE European Conference on Computer Vision (ECCV) ,2004 : 1-8.
  • 6Fashandi H, Moghaddam A M E. A new rotation invariant similarity measure for trajectories[C]// Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005:631-634.
  • 7Zhang Z, Huang K Q,Tan T N. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes[C]//Proceedings of the 18th International Conference on Pattern Recognition, 2006:1135- 1138.
  • 8Lou Jian-guang, Liu Qi -feng, Tan Tie-niu, et al. Semantic interpretation of object activities in a surveillance system[C]//Proceedings of the 16 th International Conference on Pattern Recognition (ICPR'02), 2002:777-780.
  • 9Junejo I N, Javed O, Shah M. Multi feature path modeling for video surveillance[C]// Proceedings of the Pattern Recognition, 17th International Conference on ( ICPR'04 ), 2004 : 716-719.
  • 10Khalid S, Naftel A. Evaluation of matching mtries for trajectory-based indexing and retrieval of video clips[C]// Proceedings of the Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTION'05 ), 2005 : 242-249.

同被引文献104

  • 1田京雷,毕胜.基于视频的客流计数系统的研究[C].第十二届全国图象图形学学术会议论文集.2005年:278-282.
  • 2Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition[J]. Image and Vision Computing, 1996,14(8) :609-615.
  • 3Sumpter N, Bulpitt A patterns for predicting and Vision Computing, J. Learning spatio-temporal object behavior[J]. Image 2000,18(9) : 697-704.
  • 4Hu W, Xie D, Tan T, et al. Learning activity pat- terns using fuzzy self-organizing neural network[J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2004, 34 (3) : 1618- 1626.
  • 5Atev S, Masoud O, Papanikolopoulos N. Learning traffic patterns at intersections by spectral clustering of motion trajectories[-C~ ff In IEEE International Conference on Intelligent Robots and Systems, Bei- jing, 2006 : 4851-4856.
  • 6Bashir F I, Khokhar A A, Schonfeld D. Object traj- ectory-based activity "classification and recognition using hidden Markov models~J-]. IEEE Transac- tions on Image Processing, 2007,16(7)..1912-1919.
  • 7Hu W, Xiao X, Fu Z, et al. A system for learning statistical motion patterns[J]. IEEE Transactions ~n Pattern Analysis and Machine Intelligence, 2006, 28(9) : 1450-1464.
  • 8Hu W, Xie D, Fu Z, et al. Semantic-based surveil- lance video retrieval[J]. IEEE Transactions on Im- age Processing, 2007,16(4) .. 1168-1181.
  • 9Biliotti D, Antonini G, Thiran J P. Multi-layer hier- archical clustering of pedestrian trajectories for auto- matic counting of people in video sequences[C]//In Proceedings - IEEE Workshop on Motion and Video Computing, Breckenridge, Colorado,2007 : 50-57.
  • 10Junejo N, Javed O, Shah M. Multi feature path modeling for video surveillance[C]//Proceedings of the 17th International Conference on Pattern Recog- nition, Washington DC, USA, 2004 : 716-719.

引证文献8

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部