期刊文献+

基于正交直线阵列的二维相干源测向方法 被引量:1

Approach to 2-D DOA estimation for coherent signals based on orthogonal linear array
下载PDF
导出
摘要 针对特殊阵列,提出了一种二维相干信号波达方向估计新方法,此方法只需2个正交直线阵就可估计不同用户的二维DOA。而且利用其中的一个直线阵来组合两个线阵分别估计的一维DOA,在空间平滑法基础上通过构造新的协方差矩阵,进一步去除了信源间的相干性。并分析了相乘系数对DOA的估计性能的影响,最后通过仿真结果分析了该方法的性能。 This paper presents a new method for two-dimensional(2-D) direction-of-arrival(DOA) estimation of coherent signals with a special array.This method needs only two orthogonal linear arrays to estimate the 2-D DOA of different users.It uses one of the two linear arrays to pair the 1-D DOA which is estimated by the two linear arrays respectively.It constructs a new covariance matrix based on the spatial smoothing method to further resolve the coherence between the two signals.The influence of the coefficient on the DOA estimation is analyzed.The proposed method is validated by computer simulation.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第6期1659-1663,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国防基础科研基金(K1503060217) 哈尔滨工程大学基础研究基金(HEUF04109)
关键词 信息处理技术 波达方向 相干源 空间平滑 二维 正交 informatton procesing technology direction of arrival(DOA) coherent sources spatial smoothing two-dimensional orthogonal
  • 相关文献

参考文献7

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation[J].IEEE Trans on AP, 1986, 34(3) :276-280.
  • 2Bohme J F. Estimation of source parameters by maximum likelihood and nonlinear regression[C]//ICASSP, 1984 : 731-734.
  • 3Golub G, Pereyra V. The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate[J]. SIAM J Number Anal, 1973, 10:413-432.
  • 4Jaffer A G. Maximam likelihood direction finding of stochastic sources: a separable solution[C]//In ICASSP, 1988,5 : 2893-2896.
  • 5Ottersten B, Viberg M. Analysis of subspace fitting based methods for sensor array processing[C]// In Proc ICASSP, Glasgow, Scotland, 1989 : 2807-2810.
  • 6战金龙,王安义,卢建军.一种新的二维ESPRIT算法的研究[J].西安电子科技大学学报,2003,30(4):561-564. 被引量:8
  • 7何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:65

二级参考文献13

  • 1[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741.
  • 2[2] KAVEH M,BARABELL A J.The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise[J].IEEE Trans on ASSP,April 1986,34(4):331-341.
  • 3[3] SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans on ASSP,Aug 1985,33:806-811.
  • 4[4] WILLIAMS R T,PRASAD S,MAHALANABIS A K,et al.An improved spatial smoothing technique for bearing estimation in a multipath environment[J].IEEE Trans on ASSP,April 1988,36:425-432.
  • 5[5] TAGA F,SHIMOTAHIRA H.A novel spatial smoothing technique for the MUSIC algorithm[J].IEICE Trans commun,1995,78-B:1513-1517.
  • 6[6] KUNDU D.Modified MUSIC algorithm for estimating DOA of signals[J].Signal Processing,1996,(48):85-89.
  • 7Schmidt R O. Multiple Emitter Location and Sigual Parameter Estimation[J]. IEEE Trans on AP, 1986, 34(3) : 276-280.
  • 8Gardner W. Simplificaiton of MUSIC and ESPRIT by Exploitation of Cyclostationarity[J]. Proc of IEEE, 1998, 76(7): 845-847.
  • 9Schell S. Performance of Analysis of the Cyclic MUSIC Method of Directoin Estimation for Cyclostationary Signal[J]. IEEE Trans on SP,1994, 42(11): 3043-3050.
  • 10Wang Y Y, Chen J T, Fang W H. TST-MUSIC for Joint DOA-delay Estimation[J]. IEEE Trans on Signal Processing, 2001, 49(4):721-729.

共引文献70

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部