期刊文献+

多传感器多目标联合概率数据关联研究 被引量:2

Research on Joint Probabilistic Data Association Algorithm for Multisensor-multitarget Tracking
下载PDF
导出
摘要 联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器密集多目标跟踪,则计算量剧增,数据关联成功率下降。因此,改进联合概率数据关联(AJPDA)算法对多传感器多目标量测进行同源划分及单一传感器测量数据转换,然后采用JPDA算法求解空间目标轨迹交叉时的数据关联。仿真结果表明,AJPDA算法提高了成功关联概率,降低了求解数据关联概率的难度,可以解决密集目标的正确跟踪问题。 The joint probabilistic data association (JPDA) algorithm is a good method for the single sensor muhitarget tracking. However, for the muhisensor-muhitarget (MSMT) tracking in clutter, its calculation load comes higher and it may cause the incorrect association data. Therefore, the amended joint probabilistic data association (AJPDA) algorithm for MSMT tracking is proposed in this paper. The same source observations are classified into the same set. Then the JPDA algorithm can be used to obtain the data association when the space target traces crossing. The simulation results show that the AJPI)A algorithm can increase the successful rate of data association, and reduce calculation complexity. This algorithm can make the sensor correctly track densely distributed targets.
出处 《无线电工程》 2009年第11期19-21,共3页 Radio Engineering
关键词 多传感器多目标跟踪 联合概率数据关联 AJPDA算法 multisensor-muhitarget (MSMT) tracking joint probabilistic data association (JPDA) amended joint probability data association algorithm (AJPDA)
  • 相关文献

参考文献3

二级参考文献6

  • 1逯宏亮,李伟仁.多目标数据关联的神经网络解算[J].系统仿真学报,2004,16(7):1536-1538. 被引量:6
  • 2袁刚才,吴永强.密集杂波环境下的快速数据关联算法[J].系统仿真学报,2006,18(3):561-564. 被引量:14
  • 3Sengupta D,Iltis R A.Neural Solution to the Multi-target Tracking Data Association Problem[J].IEEE Transactions on Aerospace and Electronic Systems(S0018-9251),1989,25(1):96-108.
  • 4Chin L.Application of Neural Networks in Target Tracking Data Fusion[J].IEEE Trans on Aerospace and Electronic Systems(S0018-9251),1994,30(1):281-287.
  • 5Lang Hong,Ning Zhou Cui.An Interacting Multipattern Joint Probabilistic Data Association (IMP-JPDA) Algorithm for Multitarget Tracking[J].Signal Processing (S0165-1684),2000,80(8):1561-1575.
  • 6V Vaidehi,N Chitra,M Chokkalingam,et al.Neural Network Aided Kalman Filtering for Multitarget Tracking Applications[J].Computers and Electrical Engineering (S0045-7906),2001,27(2):217-228.

共引文献170

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部