期刊文献+

Si纳米线场效应晶体管研究进展 被引量:2

Progress in Silicon Nanowire Field Effect Transistors
下载PDF
导出
摘要 从Si纳米线场效应晶体管(SiNWFET)的结构原理、Si纳米线的制作工艺以及器件电学性能的改善措施三个方面介绍了SiNWFET的研究进展。通过分析SiNWFET的漏极电压对沟道电势的影响,表明SiNWFET自身的细沟道和围栅结构对于改善亚阈值特性和抑制短沟道效应起着关键作用。针对Si纳米线的制备,介绍了光刻、刻蚀与热氧化等自上而下的方法和气-液-固生长这种自下而上的方法。分析了SiNWFET的电学性能,探讨了为改善电学性能而进行的器件结构和工艺的改进,包括选择沟道取向,采用多条纳米线、应变纳米线或新材料作为沟道以及减小源-漏接触电阻等措施。最后对SiNWFET所面临的挑战和前景作了展望。 The study of silicon nanowire field effect transistors(SiNWFETs)is reviewed from three aspects,i.e. the theory of SiNWFETs,the fabrication of silicon nanowires and approaches for electrical characteristic improvement. The effect of the drain electrode voltage on the channel electric potential of a SiNWFET is analyzed,the result indicates that the thin channel and gate all around structure of the SiNWFET play an important role in subthreshold characteristic improvement and short channel effect suppression. On the fabrication of silicon nanowires,the top-down strategy,i.e.lithography,etching and thermal oxidation technology,and the bottom-up strategy of vapor-liquid-solid (VLS) growth technology are introduced. The electrical characteristics of SiNWFETs are described and the methods for characteristic improvement are discussed,which relate to channel orientation,multi-nanowire channel,strain nanowire channel,new channel material and source-drain contact. In the end,the challenges and opportunities of SiNWFETs are outlined.
出处 《微纳电子技术》 CAS 北大核心 2009年第11期641-648,663,共9页 Micronanoelectronic Technology
基金 国家863计划资助项目(2007AA03Z303) 国家自然科学基金资助项目(60506017 60776059) 国家高技术研究发展计划资助项目(2007AA03Z303)
关键词 纳米线 场效应晶体管 短沟道效应 围栅 自限制氧化 nanowire field effect transistors(FETs) short channel effect(SCE) gate all around(GAA) self-limiting oxidation
  • 相关文献

参考文献45

  • 1KASPER E, PAUL D J. Silicon quantum integrated circuits [M]. Berlin Heidelberg: Springer-Verlag, 2005 : 177 - 185.
  • 2APPENZELLER J, KNOCH J, BJORK M T, et al. Toward nanowire electronics [J]. IEEE Trans Elec Dev, 2008, 55 (11): 2827-2845.
  • 3SUK S D, LEE S Y, KIM S M, et al. High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer [C] //Proc of Characteristics, and Reliability. Electron Device Meeting (IEDM) . Washing ton, DC, 2005: 717-720.
  • 4SINGH N, LIM F Y, FANG W W, et al. Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter, channel-orientation and low temperature on device performance [ C ] //Proc of Electron Device Meeting (IEDM). San Francisco, USA, 2006: 548- 551.
  • 5TIAN Y, HUANG R, WANG Y Q, et al. New self-aligned silicon nanowire transistors on bulk suhstrate fabricated by epifree compatible CMOS technology: process integration, experimental characterization of carrier transport and low frequency noise[C]//Proc of Electron Device Meeting (IEDM). Washington, DC, 2007: 895-898.
  • 6CHEN C Y, LIAO Y B, CHIANG M H. Scaling study of nanowire and multi-gate MOSFETs [C]//Proc of International Conference on Solid-State and Integrate&Circuit Technology (ICSICT) . Beijing, China, 2008:A1.12.
  • 7COLINGE J P. From gate-all-around to nanowire MOSFETs[C]//Proc of International Semiconductor Conference. Sinaia, Romania, 2007:11 - 17.
  • 8SINGH N, BUDDHARAJU K D, MANHAS S K, et al. Si, SiGe nanowire devices by top-down technology and their applications[J].IEEE Trans Elec Dev, 2008, 55 (11):3107- 3118.
  • 9JIANG Y, LIOW T Y, SINGH N, et al. Performance breakthrough in 8 nm gate length gate-all-around nanowire transistors using metallic nanowire contacts[C]//Proc of VLSI Syrup Tech. Hawaii, USA, 2008: 34-35.
  • 10YANG F L, LEE D H, CHEN H Y, et al. 5 nm-gate nanowire Fin FET [C] //Proc of VLSI Syrup Tech. Hawaii, USA, 2004: 196- 197.

同被引文献21

  • 1HEEB J. Future mobile phones, a beautiful dream of smoke in I.SI technology [C]//Int Sol Sta Circ Conf. San Francisco, CA, USA. 2003: 292-293.
  • 2MOTOYOSHI M. Through-silicon via (TSV)[J]. Proc IEEE, 2009, 97(1): 43-48.
  • 3BHR M. The evolution of scaling from the homogeneous era to the heterogeneous era [C] // Tech Dig IEEE Int Elec Dev Meet. Washington D C, USA. 2011: 1.1.1-1.1.4.
  • 4BATUDE P, VINET M, POUYDEBASQUE A, et al. Advances in 3D CMOS sequential integration[C] //Tech Digest IEEE Int Elec Dev Meet. Baltimore, MI), USA. 2009:14. 1.1 - 14. 1.4.
  • 5BATUDE P, VINET M, PREVITALI B, et al. Advances, challenges and opportunities in 3D CMOS sequential integration [C] // Tech Digest IEEE Int Elec Dev Meet. Washington D C, USA. 2011: 7.3.1- 7.3.4.
  • 6刘卫丽,陈邦明,宋志棠,等.一种三维多层平面互补金属氧化物半导体器件结构及其制备方法[P].中国专利:200410067220.2,2004.
  • 7刘卫丽,宋志棠,封松林,等.一种三维互补金属氧化物半导体器件结构及其制备方法[P].中国:200410067217.0,2004.
  • 8XIAO D-Y, WANG X. Gate-all-around CMOSFET devices [P]. USA: US 2011/0254058 A1, 2011.
  • 9XIAO D-Y, WANG X, ZHANG M. Hybrid material accumulation mode GAA CMOSFET [P]. USA: US 2011/0254099 A1, 2011.
  • 10XIAO D-Y, WANG X, ZHANG M. Hybrid material inversion mode GAA CMOSFET [P] USA: US 2011/0254101 A1, 2011.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部